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ABSTRACT

The concept of cooperative relay is an essential technique for future cellular networks such as

wireless mesh networking or wireless ad-hoc networking. In a practical relay network, channel

coding, network coding, and antenna arrays, will coexist and yet the joint optimization of

these conventional coding schemes and cooperative relay is not well understood. To build a

design guideline for relay network, this dissertation develop a joint optimization methodology

for multiple coding schemes in multiple access relay network.

There are four major contributions in this thesis: First, we jointly optimize conventional

coding schemes and radio resources of multiple access relay network with multiple antennas.

The combined design of MIMO transmission modes, channel coding at the source, network

coding at the relay have been investigated. We develop optimal design rule that minimize the

end-to-end error probability. Second, we derive the fundamental tradeoff between achievable

rate and reliability of multiple access relay network with multiple antennas. We consider three

MIMO transmission modes, spatial multiplexing (SM), Alamouti coding as transmit diversity

(TD), and Golden Coding, and random linear network coding at the relay. We compare the

average decoding error probability of each transmission mode. Third, we present an interference

cancellation scheme for multi-user MIMO. The proposed Log-likelihood-ratio (LLR) ordered

successive interference cancellation (SIC) scheme provides 1 ∼ 3dB gain over the conventional

SNR-ordered SIC and the gain increases with increasing number of users. Finally, we present

a new architecture for MIMO receivers that cancel the co-channel interference (CCI) using a

single radio frequency (RF) and baseband (BB) chain, while still achieving nearly the same bit

error rate that can be provided by the conventional receiver requiring multiple RF/BB chains.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

The evolution of wireless communication technology has been dramatic over the past

decades. A new mobile generation has appeared every decade since the first 1G system (NMT)

was introduced in 1981, 2G (GSM) system that started to roll out in 1992, and 3G (W-

CDMA/FOMA) which appeared in 2001. Pre-4G technologies such as WiMAX and 3G Long

term evolution (LTE) have been on the market since 2006 and 2009 respectively. As the mobile

technology progresses, the mobile data traffic is also growing at an explosive rate; the mobile

traffic was reported to be two hundred thousand terabyte at 2003, six hundred thousand ter-

abyte at 2010, and is expected to reach 1.4 million terabyte at 2020. The explosive growth in

mobile communication has reached to a point where researchers have begun to develop wire-

less network architecture instead of the traditional point-to-point based communication with

central controlling base station.

One example of this trend is the multiple-access relay network where multiple sources com-

municate to a common destination with the help of cooperating relays. This new research trend

is based on the recognition that any wireless transmission from each transmitter can be received

and processed at other nodes to achieve a performance gain, rather than being considered as

interference. The basic relaying techniques, including amplify and forward (AF), decode and

forward (DF), and selective relaying, for cooperative relay was first introduced by Laneman

and Wornell in their seminal paper [1] which triggered interest in the study of cooperative relay

networks. Conventional coding schemes, such as channel coding, network coding, and antenna

array, has been applied to the cooperative relay in order to further improve the system perfor-

mance. However, it seems we are only beginning to understand about the joint optimization of
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multiple coding schemes within cooperative network and practical ways to approach them. In

order to have a design guideline for relay network, development of comprehensive optimization

theory among multiple coding schemes based on the relaying strategy is essential.

In this dissertation, we jointly optimize conventional coding schemes and radio resources of

multiple access relay network with multiple antennas. We investigate the combined design of

the MIMO transmission modes, channel coding at the source node, network coding strategy at

the relay, node location, and transmit power. We develop optimal design rule that minimize the

end-to-end error probability. In the present work, We consider four MIMO transmission modes

( spatial multiplexing (SM), beamforming and Alamouti coding as transmit diversity (TD), and

Golden Coding ), three types of network coding (NC) scheme at the relay ( deterministic NC,

adaptive NC, and random NC ), and two different error probability measures (outage proba-

bility and decoding error probability). We also present two practical MIMO receiver schemes.

First, Log-likelihood-ratio (LLR) ordered successive interference cancellation (SIC) scheme is

analyzed in multi-user, multi-mode system which provides 1 ∼ 3dB gain over the conventional

SNR-ordered SIC in multiuser MIMO system and the gain increases with increasing number

of users. Second, we present a new architecture for MIMO receivers that cancel the co-channel

interference (CCI) using a single radio frequency (RF) and baseband (BB) chain, while still

achieving nearly the same bit error rate that can be provided by the conventional receiver

requiring multiple RF/BB chains.

1.2 Article Survey

Information theoretic study on the multiple access relay channel (MARC) was first in-

troduced in [2]. Outer bounds on the capacity of the MARC has been studied in [3], the

diversity-multiplexing tradeoff (DMT) has been developed in [4], [5], [6], and an outage min-

imizing relaying strategy has been studied in [7]. Among many literatures, the authors in

[8] and [9] analyzed DMT of single-relay system with single antenna nodes for half-duplexing

relays. MIMO relay channels were studied in [10] and [11] where the authors in [10] present

the DMT lower bound of nonorthogonal amplify and forward protocol and the authors in [11]

consider the DMT of decode and forward (DF) and compress-and-forward (CF) protocols for
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both full-duplex and half-duplex relays.

In recent years, several network coding techniques for the MARC have been studied. Au-

thors in [12] investigated the cooperative diversity gain offered by the network coding, assuming

that the relays are able to decode all source messages reliably. Authors in [13] proposed a net-

work coding scheme based on low-density parity-check (LDPC) codes that accounts for the

lossy nature of wireless networks and showed that a significant coding/diversity gain can be

achieved. Hausl et. al. proposed a joint network-channel coding scheme based on turbo codes

for the case of two sources and one relay [18]. Authors in [19] presented LDPC code design for

decode-and-forward relaying in single-source single-destination scenario. Author in [16] inves-

tigated the tradeoff between reliability and rate as a function of node density and SNR, and

showed how the energy and node density can be traded in achieving a given reliability-rate pair

in single antenna case. [17] analyzed an network coded cooperation that adaptively matchs

networks-on-graphs to the well-known class of codes-on-graphs such as LDPC codes, which

enables real-time adaptation of network codes to variant link states and changing network

topologies.

Network coding for multiple antennas have been studied for special network geometries in

[18], [19]: [18] proposed a cross-layer design employing multiple antenna techniques and network

coding called a MIMO two-way relay for one dimensional mesh network and [19] investigated

the performance of MIMO network coding in the bi-directional relay network. An adaptive

relay protocol has been proposed for a network with single antenna relays in [20] - [22] and for

a network with multiple antennas using amplify and forward protocol in [23], [24]. Authors in

[24] proposed an adaptive antenna selection scheme at both the relay and the source for half-

duplex MIMO amplify and forward relay protocol. Rate optimization for relay network has been

addressed in [25] and [26]: [25] proposed a throughput optimal control policy for the parallel

relay network with decode and forward protocol. Authors in [26] analyzed the performance of

variable-rate two phase collaborative diversity protocols and optimized the transmission rate

based on the node location.
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1.3 Outline of The Dissertation

This dissertation is organized as follows: Chapter 2 summarizes the basic relaying techniques

of cooperative network and review space-time coding performance. Our main discussion and

results are contained in Chapter 3-4 and we investigate the combined design of the MIMO

transmission modes, coding rate, network coding strategy at the relay, node location, and

transmit power. Chapter 3 treats deterministic network coding and adaptive network coding at

the relay, and Chapter 4 treats the fundamental tradeoff between achievable rate and reliability

using random network coding. In Chapter 5 and 6, we present practical MIMO receiver schemes.

Chapter 5 treats LLR ordered SIC scheme for multi-user, multi-mode MIMO system, whereas

Chapter 6 cover a new architecture for MIMO receivers that cancel the co-channel interference

using a single RF/BB chain. Finally, Chapter 7 summarizes our conclusions and points to areas

for future research.



www.manaraa.com

5

CHAPTER 2. BACKGROUND AND RELATED LITERATURE

2.1 Cooperative Relay Protocols

In this chapter, we review cooperation strategies for relay network and compare space-time

coding performance. For relay network, we consider a simplified three node model as shown

in Fig. 2.1. and assume that source and relay transmit same energy E = Es = Er. The

communication protocol consists of two orthogonal phases. In the first phase, a source sends

information to its destination, and the information is also received by the relay at the same

time. The received signals at the destination and the relay in the first phase are given by

yds =
√
E hdsx+ nds

yrs =
√
E hrsx+ nrs

(2.1)

where hij indicate the channel gain between node i and j, nij is the additive noise, and x is the

transmitted symbol. For Rayleigh fading, hij is modeled as a Gaussian random variance with

mean zero and variance 0.5 per dimension. The additive complex Gaussian noise nij has mean

zero and variance N0/2 per dimension. In the second phase, the relay forwards a processed

version of the source’s signal to the destination which can be modeled as

ydr =
√
E hdrq (yrs) + ndr (2.2)

and the function q(·) depends on the utilized relaying protocol.

2.1.1 Amplify and Forward relaying (AF)

In AF protocol, the relay transmits an amplified version of yrs to the destination. The relay

amplify the received signal by a factor β that is inversely proportional to the received power,
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so that the signal from the relay q(yrs) has transmit energy E.

q (yrs) = βyrs, β =

√
E√

E|hrs|2 +N0

(2.3)

The received signal at the destination in the second phase according to (2.2) is given by

ydr =

√
E√

E|hrs|2 +N0

hdryrs + ndr

=

√
E√

E|hrs|2 +N0

√
Ehdrhrsx+ n′dr

(2.4)

where n′dr is a complex Gaussian random variable with mean zero and variance N ′0.

N ′0 = N0

(
1 +

E|hdr|2

E|hrs|2 +N0

)
(2.5)

The destination receives two representation of the signal x through the source link and relay

link and apply maximal ratio combining (MRC) as follows.

y = a1yds + a2ydr (2.6)

The combining factors a1 and a2 are choosen to to maximize the combined SNR.

a1 =

√
Eh∗ds
N0

, a2 =

√
E

E|hrs|2+N0

√
Eh∗drh

∗
rs

N ′0

(2.7)

By assuming that the symbol x has unit energy, the received SNR of the MRC output is

γ = γ1 + γ2 (2.8)

where

γ1 =
|a1

√
Ehds|2

|a1|2N0
=
E|hds|2

N0
= Γ|hds|2, Γ =

E

N0

(2.9)

and

γ2 =
|a2

√
E

E|hrs|2+N0

√
Ehdrhrs|2

|a2|2N ′0
=

1

N0

E2|hdr|2|hrs|2

E (|hrs|2 + |hdr|2) +N0

=
Γ2|hdr|2|hrs|2

Γ (|hrs|2 + |hdr|2) + 1

(2.10)

Hence, the mutual information for amplify-and-forward relaying is given by

IAF =
1

2
log (1 + γ1 + γ2) =

1

2
log
(
1 + Γ|hds|2 + f(Γ|hrs|2,Γ|hdr|2)

)
(2.11)
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where

f(x, y) ,
xy

x+ y + 1
(2.12)

The outage probability can also be obtained by averaging over the Rayleigh fading which can

be simplified at high SNR as follows

P [IAF < R] '
(

22R − 1

Γ

)2

(2.13)

We note that AF protocol achieves diversity order 2.

2.1.2 Decode and Forward relaying (DF)

In DF protocol, the relay decode the received signal, re-encode it, and then retransmit it to

the receiver. We denote the decoded signal at the relay as x̂ and the transmitted signal from

the relay as
√
Ex̂. The end-to-end mutual information of DF protocol is limited by the mutual

information of the weakest link between the sourcerelay and the combined channel from the

sourcedestination and relaydestination as follows.

IDF =
1

2
min

{
log(1 + Γ|hrs|2), log(1 + Γ|hds|2 + Γ|hdr|2)

}
(2.14)

The outage probability for DF protocol is given by P [IDF < R] and can be written as

P [IDF < R] = P

{
|hrs|2 <

22R − 1

Γ

}
+ P

{
|hrs|2 >

22R − 1

Γ

}
P

{
|hds|2 + |hdr|2 <

22R − 1

Γ

}
(2.15)

At high SNR, the outage probability can be simplified as follows

P [IDF < R] ' 22R − 1

Γ
(2.16)

We note that DF protocol provides diversity order 1, because the performance of the system is

limited by the worst link from the source to relay and the source to destination.

2.2 Space-time coding performance comparison

In this section, we consider a space-time (ST) coded MIMO system with Mt transmit and

Mr receive antennas as shown in Fig. 2.2. The ST encoder divides input data stream into k
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bit long blocks and, for each block, selects one ST codeword from the codeword set of size 2k.

The selected codeword is then transmitted through the channel over the Mt transmit antennas

and T time slots. Each codeword can be represented as a T ×Mt matrix

C =



c1
1 c2

1 · · · cMt
1

c1
2 c2

2 · · · cMt
2

...
...

. . .
...

c1
T c2

T · · · cMt
T


(2.17)

where cit denotes the transmitted symbol from i th antenna at time t. We assume that the

codewords satisfy energy constraint E[||C||2F ] = MtT , and the channel is frequency flat, quasi-

static fading. The channel state information (CSI) is available at the receiver, but not at the

sender. The received signal yjt at j th antenna at time t can be expressed as

yjt =

√
E

Mt

Mt∑
i=1

cithij + zjt (2.18)

where zjt is the complex Gaussian noise at receive antenna j at time t and E is the average

received SNR at each receive antenna. (2.18) can be rewritten as follows

Y =

√
E

Mt
CH + Z (2.19)

where Y = yjt is the received signal matrix of size T ×Mr, H = hij is the channel coefficient

matrix of size Mt ×Mr, and Z = zjt is the noise matrix of size T ×Mr. The receiver decode

the transmitted matrix using ML decoding as follows.

Ĉ = arg min
C
||Y −

√
E

Mt
CH||2F (2.20)

The average pairwise error probability given that codeword Ca is transmitted and Cb is detected

is determined as follows.

P (Ca → Cb) = EH

[
Q

(√
E

2Mt
||Ca − Cb||F

)]

≤ 1

2

r∏
i=1

(
1 +

Eλi
4Mt

)−Mt

≤ 1

2

(
E

4Mt

)−rMt
(

r∏
i=1

λi

)−Mt
(2.21)

where r = rank(Ca−Cb) and λi are the non-zero eigenvalues of (Ca−Cb)(Ca−Cb)H . Two ST

code design criteria can be developed based on the upper bound (2.21).
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• Rank criterion: The minimum rank of the code difference matrix Ca − Cb should be as

large as possible. If the matrix Ca−Cb has full rank, the corresponding ST code achieves

full diversity.

• Product criterion: The minimum value of
∏r
i=1 λi should be as large as possible. This

quantity is referred to as the coding gain achieved by the ST code.



www.manaraa.com

10

Source

Relay

Destination
E s

E r

hrs

hds

hdr

Figure 2.1 Three node relay network.
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y t
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y t
M r

t=1,2,… ,T

Figure 2.2 MIMO system with Mt transmit and Mr receive antennas
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CHAPTER 3. MIMO NETWORK CODING

In this chapter, we consider a multiple access relay network where multiple source nodes

send independent packets to a common destination with the assistance from a relay node. We

assume that the relay node is equipped with multiple antennas and is allowed to choose either

spatial multiplexing (SM) or beam forming mode as transmit diversity (TD). We develop a

combined design methodology for MIMO transmission, network coding at the relay node, and

channel coding rate at the source nodes that minimizes the end-to-end outage probability.

3.1 Introduction

We consider a multiple access relay network where multiple source nodes send independent

packets to a common destination with the assistance from a relay node. We assume that

the relay node is equipped with multiple antennas and is allowed to choose either spatial

multiplexing (SM) or beam forming mode as transmit diversity (TD). The main objective of

this chapter is to propose a transmission mode selection scheme at the relay which optimize

these three linear combinations concurrently.

There are numerous works that optimize either the network coding, the MIMO transmission

modes, or the data rates in multiple access relay channel. Network coding techniques for

single antenna relay network have been studied in [84] - [30]. The cooperative diversity gain

offered by the network coding has been investigated in [84]. [85] proposed a network coding

scheme based on low-density parity-check (LDPC) codes that accounts for the lossy nature of

wireless networks and showed that a significant coding/diversity gain can be achieved. Authors

in [86] investigated the tradeoff between reliability and rate as a function of node density

and SNR, and showed how the energy and node density can be traded in achieving a given
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reliability-rate pair in single antenna case. [30] analyzed an network coded cooperation which

adaptively match networks-on-graphs to the well-known class of codes-on-graphs such as LDPC

codes. This approach enables real-time adaptation of network codes to variant link states and

changing network topologies. Network coding for multiple antennas have been studied for

special network geometries in [87], [88]. [87] proposed a cross-layer design employing multiple

antenna techniques and network coding called a MIMO two-way relay for one dimensional mesh

network and [88] investigated the performance of MIMO network coding in the bi-directional

relay network. An adaptive relay protocol has been proposed for a network with single antenna

relays in [89] - [91] and for a network with multiple antennas using amplify and forward protocol

in [92], [93]. Authors in [93] proposed an adaptive antenna selection scheme at both the relay

and the source for half-duplex MIMO amplify and forward relay protocol. Rate optimization

for relay network has been addressed in [38], [39]. [38] proposed a throughput optimal control

policy for the parallel relay network with decode and forward protocol. Authors in [39] analyzed

the performance of variable-rate two phase collaborative diversity protocols and optimized the

transmission rate based on the node location.

These previous works solve optimization problem for the specific linear combination. They

either optimize the network coding and MIMO, adapt the relay protocol for different network

model, or optimize network coding and channel coding. However, if multiple linear combi-

nations coexist in the network, these approaches provide a suboptimal solution. With this

motivation, we analyze a multiple access relay network where three types of linear combina-

tions coexist and optimize these combinations concurrently. To that end, we derive the outage

probability with the maximum likelihood decoding at the destination, and investigate the effect

of the MIMO transmission modes at the relay, coding rates from each source, relay locations,

and different network coding schemes on the outage probability. Throughout the outage proba-

bility analysis, we propose an optimal MIMO mode selection scheme which depends on channel

codings from the source, the network coding at the relay, and the MIMO transmission modes.

This mode selection scheme serves as a design guideline for an optimal relay network.

The remainder part of this chapter is organized as follows. A system model is described

in Section II and the outage probability is derived in Section III, and Section IV presents the
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optimum MIMO mode selection scheme. Section V provides numerical results and Section VI

concludes the chapter.

3.2 System Model

Consider a multiple access relay network shown in Fig. 3.1, where K sources send distinct

messages to a common destination with the assistance by a relay. The communication protocol

consists of two phases. In the first phase, each source is assigned an orthogonal channel, and

transmits its message to the destination after channel coding. Let ui denote the message of the

i-th source and xi = (xi1, xi2, · · · , xin) denote the transmitted channel codeword of ui. Due

to the broadcast nature of the wireless medium, the relay may also overhear the codewords

x1,x2, · · · ,xK possibly with some errors. If the relay successfully decodes all K codeword 1, it

makes a linear combination of decoded words, encodes the network coded data, and sends the

result to the destination. If at least one codeword is received in error at the relay, it remains

silent during the second phase.

We assume that the relay is equipped with two antennas and may choose one of two MIMO

transmission modes: spatial multiplexing (SM) and transmit diversity (TD). In the SM mode,

the decoded words u1, · · · ,uK are divided into two groups and decoded words in each group

are linearly combined to yield two network encoded vectors

SM : v1 =

K/2∑
i=1

aiui, v2 =
K∑

i=K/2+1

biui (3.1)

where the coefficients ai, bi are elements in GF(M). Then, v1 and v2 are channel encoded and

the resulting codewords p1 and p2 are sent to the destination. In the TD mode, the decoded

words u1, · · · ,uK are linearly combined to yield a network coded vector

TD : v0 =

K∑
i=1

ciui (3.2)

Then, v0 is channel encoded and the resulting channel codeword p0 is sent to the destination

after applying a proper weighting factors for beamforming.

1The relay uses cyclic redundancy check (CRC) code for error checking.
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We assume that each source is located at unit distance from the destination (dds = 1) and

the relay is located at distance ddr ∈ [0, 1] from the destination. The distance dri between i-th

source and the relay is given by

dri =
√
d2
dr + d2

ds − 2ddrdds cos θi , i = 1, · · · ,K (3.3)

where the angle θi is shown in Fig. 3.1. The channel gain between nodes i and j, hij , is given

by

hij =
√
d−αij · zij (3.4)

where dij is the distance between nodes i and j, α is the path loss exponent and zij captures

the channel fading characteristic. For Rayleigh fading, zij is modeled as a Gaussian random

variable with mean zero and variance 0.5 per dimension.

The received signals at the destination and the relay in the first phase when xi is sent by

the i-th source are given by

ydi = hdixi + ndi

yri = hrixi + nri

(3.5)

where nij is the complex Gaussian vector with mean zero and variance N0/2 per dimension.

The received signals at the destination in the second phase are given by

ydr
∣∣
SM

= g1p1 + g2p2 + ndr

ydr
∣∣
TD

= (|g1|2 + |g2|2)p0 + ndr

(3.6)

where gr, r = 1, 2 is the channel gain between the r-th antenna of the relay and the destination.

The frame structures are compared in Fig. 3.2. Without relay, each source transmits its

packet during T seconds. With relay, each source and relay transmits its packet during Tc

seconds, where Tc = TK/(K + 1). To achieve the effective rate of R bps/Hz, R has to be

changed to Rc = R(K + 1)/K for the network with relay.

In this section, we derive the outage probability with the maximum likelihood (ML) decod-

ing at the destination. We derive four users case (K = 4) first and extend the result to K users

in general.
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3.2.1 Link Outage Probability

For notational simplicity, we denote the link outage of xi as xi. Similarly, the link outage

of pl, l = 0, 1, 2 is denoted by pl. The link outage probability for xi is given by

pds , P (xi) = P (I(xi : ydi) < Rc)

= 1− exp

(
−2Rc − 1

γs

) (3.7)

where γs = d−αds Es/N0 is the received SNR of the source symbol at the destination 2. For

Si → R channel with MRC at the relay, the link outage probability at the relay is given by

pri , P (I(xi : yri) < Rc)

= 1−
(

1 +
2Rc − 1

γri

)
exp

(
−2Rc − 1

γri

) (3.8)

where γri = d−αri Es/N0 is the received SNR of the i-th source symbol at the relay. The link

outage probability of R→ D channel in TD (beamforming) mode is given by

pTD , P (p0) = P (I(p0 : ydr) < Rc)

= 1−
(

1 +
2Rc − 1

γr

)
exp

(
−2Rc − 1

γr

) (3.9)

where γr = d−αdr Er/N0 is the received SNR of the relay provided symbol at the destination.

The proof of (3.7), (3.8), (3.9) are in [94]. The link outage probability for R → D channel in

SM mode is given by

pSM , P (p1) = P (I(p1 : ydr) < Rc)

= 1−
(

1 +
22Rc − 2Rc

γr

)
exp

(
−22Rc − 1

γr

) (3.10)

which is the outage probability for p1. Proof of (3.10) is provided by the Appendix A. At high

SNR, it follows from the approximation exp(x) w 1 − x for x � 1 that (3.7)-(3.10) can be

approximated as

pds
.
=

(
2Rc − 1

γs

)
, pri

.
=

(
2Rc − 1

γri

)2

pTD
.
=

(
2Rc − 1

γr

)2

, pSM
.
=

(
2Rc − 1

γr

) (3.11)

2(3.7) is same for all sources, since all source are located at unit distance from the destination.
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3.2.2 End-to-End Outage Probability

We derive the end-to-end outage probability for x1. The end-to-end outage probability

for other sources can similarly be derived. The outage event for x1 depends on whether the

relay decodes x1, · · · ,x4 (denoted as r) or not (denoted as nr). Given the event r occurs, the

end-to-end outage in SM mode occurs if and only if x1 occurs and x2 or p1 occurs. Therefore,

the end-to-end outage probability for x1 given r is

P (out|r) = P (x1)× P (x2 ∪ p1) (3.12)

In TD mode, the end-to-end outage for x1 occurs if and only if x1 occurs and x2 or x3 or x4

or p0 occurs. Therefore,

P (out|r) = P (x1)× P (x2 ∪ x3 ∪ x4 ∪ p0) (3.13)

in TD mode.

P (out|r) indicates that even if x1 fails from the direct transmission, the destination may

still recover x1 by combining x2 and p1 in SM mode or by combining x2, x3, x4 and p0 in

TD mode. The last term in (3.12)-(3.13) can be further simplified by using an addition rule of

probability P (A1 ∪ A2) = P (A1) + P (A2) − P (A1 ∩ A2) and the independence of events (i.e.,

independence of the channel) as follows.

P (out|r)SM = pds pSM + (1− pSM)p2
ds

P (out|r)TD = pds pTD + (1− pTD)p2
ds

[
p2
ds − 3pds + 3

] (3.14)

Given the event nr occurs, the end-to-end outage occurs if the direct link is in outage. Hence,

we obtain

P (out|nr) = P (x1) = pds (3.15)

Therefore, the end-to-end outage probability for x1 is given by

P (out) = P (out|nr)P (nr) + P (out|r)P (r) (3.16)

where P (r) =
∏4
i=1(1−pri) is the probability that x1, · · · ,x4 are correctly decoded at the relay

and P (nr) = 1− P (r).
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Although TD mode provides a diversity order of 2 for the relay-to-destination channel, four

codewords (x2, x3, x4, and p0) have to be correctly received at the destination in order to

recover x1 from p0, whereas in SM mode two codewords (x2 and p1) have to be correctly

received at the destination. For this reason, if the source-to-destination channel is noisy, then

SM mode provides a lower outage probability than TD mode. However, if the source-to-

destination channel is reliable, the probability of xi is small and the diversity order of pl plays

an important role. Thus, TD mode provides a lower outage probability than SM mode.

3.2.3 Generalization to Multiple Sources and Relays

First, if there are K sources and a single relay,

P (r) =
K∏
i=1

(1− pri), P (nr) = 1− P (r) (3.17)

and the second term in (3.12)-(3.13) becomes

P
(
x
K/2
2 ∪ p1

)
= 1− (1− pSM)(1− pds)K/2−1 (3.18)

in SM mode and

P
(
xK2 ∪ p0

)
= 1− (1− pTD)(1− pds)K−1 (3.19)

in TD mode where

xK2 , x2 ∪ x3 ∪ · · · ∪ xK (3.20)

Proof of (3.18), (3.19) is provided in Appendix B. Then, the outage probability P (out) for

multi sources, single relay case can be calculated by substituting (3.17)-(3.19) into (3.16).

Second, if there are K sources and R relays,

P (r) =

R∏
r=1

K∏
i=1

(1− pri), P (nr) = 1− P (r). (3.21)

For simplicity, we ssume that power control is applied to each relay, so that the received SNR

γr of the relay provided codeword at the destination is identical. We denote the r-th relay’s
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network coded codeword as p1r, p2r for SM mode where r indicate the r-th relay and the

network encoding rules are given as follows.

SM : v1r =
n∑
i=1

aiui, v2r =
K∑

i=n+1

biui (3.22)

If x1 fails from the direct transmission, the destination may still recover x1 by combining

(x2,x3, · · · ,xn,p11, · · · ,p1R) where each p1r is linearly independent. Hence, the end-to-end

outage in SM mode occurs if and only if x1 occurs and any l (l ≥ R) out of R + (n − 1)

codewords (x2,x3, · · · ,xn,p11, · · · ,p1R) are in outage.

P (out|r)SM = P (x1)× P ( ∀ l out of R+ (n− 1) codewords are in outage, l ≥ R )

= pds

n−1∑
i1=0

R∑
i2=R−i1

(
n− 1

i1

)(
R

i2

)
pi1ds (1− pds)(n−1)−i1 pi2SM (1− pSM)R−i2

 , if R ≥ n− 1

= pds

[
R−1∑
i1=0

R∑
i2=R−i1

(
n− 1

i1

)(
R

i2

)
pi1ds (1− pds)(n−1)−i1 pi2SM (1− pSM)R−i2

+

n−1∑
l=R

(
n− 1

l

)
plds (1− pds)(n−1)−l

]
, if R < n− 1

(3.23)

where pds = P (xi), pSM = P (p1r) are given in (3.7) and (3.10), respectively.

For TD mode, the r-th relay’s network coded codeword p0r is generated as follows.

TD : v0r =

K∑
i=1

ciui (3.24)

The end-to-end outage occurs if and only if x1 occurs and any l (l ≥ R) out of R + (K − 1)

codewords (x2,x3, · · · ,xK ,p01, · · · ,p0R) are in outage. Hence, P (out|r)TD can be similarly

derived by replacing n to K in (3.23) and pSM to pTD. We note that the diversity order of

P (out|r) in (3.23) is R+ 1 for a fixed received SNR per information bit γb = (Kγs + 2Rγr)/K.

P (out|r)SM
.
= pds

[
pi1dsp

i2
SM

]
.
=

1

γs

[
1

γi1s

1

γi2r

]
.
=

1

γ
min(i1+i2)+1
b

=
1

γR+1
b

(3.25)
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3.3 Combined Design Rule

In this section, we develop a combined design rule that determines the MIMO transmission

mode, network coding at the relay, and code rate R at the source that minimizes the end-to-end

outage probability.

P (out)SM

TD
≷
SM

P (out)TD (3.26)

If the terms with diversity order greater than 1 are ignored, (3.26) can be simplified to(
K

2
− 1

)
pds + pSM

TD
≷
SM

(K − 1) pds (3.27)

which is equivalent to

f(K,Rc, γs, γr)
TD
≷
SM

K

2
− 1 (3.28)

and

f(K,Rc, γs, γr) ,
K

2
exp

(
−2Rc − 1

γs

)
−
(

1 +
22Rc − 2Rc

γr

)
exp

(
−22Rc − 1

γr

) (3.29)

At high SNR, it can be shown from (3.11) that the MIMO mode selection rule in (3.28) is

equivalent to

γr
γs

TD
≶
SM

2

K
(3.30)

We note that as the number of users K increase, SM mode provides better performance than

TD. This is because for large K, the right-hand side of (3.27) is much bigger than the left-hand

side pSM, so the end-to-end outage probability of SM provides lower value than that of TD.

3.4 Adaptive Network Coding

In this section, we relax the relaying condition in Section III (i.e., the relay combine correctly

received codewords, and cooperate even in the case with detection error. ), and derive the end-

to-end outage probability as well as the decoding error probability for K = 4 case.
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3.4.1 End-to-End Outage Probability

We apply the network coding rule presented in Table 3.1. The error event ei = 0 indicates

that the corresponding codeword is correctly decoded at the relay, whereas ei = 1 indicates

decoding error. The outage probability P (out|e1) for error pattern e1 is given by (3.14)

P (out|e1)SM = pds

[
1− (1− pSM) · (1− pds)

]
P (out|e1)TD = pds

[
1− (1− pTD) · (1− pds)3

] (3.31)

and the outage probability for other error patterns are presented in Table C.17. Hence, the

end-to-end outage probability of adaptive network coding is given by

P (out)SM or TD =
16∑

ei,i=1

P (ei) · P (out|ei)SM or TD. (3.32)

3.4.2 Decoding Error Probability

For this section only, we assume that each source node transmit a binary bit xi ∈ {0, 1},

i = 1, · · · , 4 to the destination over orthogonal channels. The received signal at the destination

and the relay in the first phase when xi is sent by the i th source are given by

ydi = hdi(−1)xi
√
d−αds Es + ndi

yri = hri(−1)xi
√
d−αri Er + nri

(3.33)

where ydi and yri are complex scalars. Based on yri, the relay decode xi as x̂i = xi ⊕ ei with

decoding error ei where the decoding error probability p(ei = 1) depends on the receiver scheme

at the relay such as maximal-ratio combining (MRC) or equal-gain combining (EGC).

After decoding, the relay check for errors using CRC code and exclude the symbols with

error from parity generation. The relay partition the source nodes into subgroup and generate

the parity bit using only the symbols from the corresponding subgroup as shown in Table 3.1.

For example, if the relay use SM mode, there are two subgroups; {x1, x2}, {x3, x4}. The relay

generate two parity bits p1, p2 using the symbols out of each subgroup as follows.

p1 = x1 ⊕ x2, p2 = x3 ⊕ x4 (3.34)
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when all symbol are correctly decoded at the relay. If x2 has a detection error (i.e., e2 = 1),

the generated parity bits are given by

p1 = x1, p2 = x3 ⊕ x4. (3.35)

If both symbol in a subgroup has detection error (e.g., x1, x2 are both in error ), the corre-

sponding parity bit forwards same parity bit from the other subgroup as follows

p1 = p2 = x3 ⊕ x4. (3.36)

For TD mode, the relay use all 4 symbols {x1, x2, x3, x4} to generate a parity bit p0 = x1 ⊕

x2⊕x3⊕x4 and transmit it using beamforming. The received signals at the destination in the

second phase are given by

ydr
∣∣
SM

= (g1(−1)p1 + g2(−1)p2)
√
d−αdr Er + ndr

ydr
∣∣
TD

= (|g1|2 + |g2|2)p0

√
d−αdr Er + ndr

(3.37)

The destination decode the transmitted codeword using ML decoding based on the received

signals (yd1, yd2, yd3, yd4, ydr) during two consecutive phase.

The adaptive network coding rule for multiple access relay network is presented in Table

3.1 and the codebook for each error pattern ei = (e1, e2, e3, e4) is given in Appendix C. First,

we derive the union bound of decoding error probability for a particular error pattern e1. Let

ca = (xa,1, · · · , xa,4, pa,1, pa,2) and cb = (xb,1, · · · , xb,4, pb,1, pb,2) be two distinct codewords. The

conditional pairwise error probability with ML decoding is given by

Pr (ca → cb) = E

Q

√√√√(

4∑
i=1

||ya,di − yb,di||2 + ||ya,dr − yb,dr||2)/2N0


≤ 1

2

4∏
i=1

Ehdi

[
exp

(
−
||ya,di − yb,di||2

4N0

)]
Egr

[
exp

(
−
||ya,dr − yb,dr||2

4N0

)] (3.38)

For Rayleigh fading channel hdi and gr, we have

Ehdi
[
exp

(
−||ya,di − yb,di||2/4N0

)]
=

[
1

1 + d−αds (xa,i ⊕ xb,i)Es/N0

]
(3.39)

which is proved in [56] for point-to-point channel and

Egr
[
exp

(
−||ya,dr − yb,dr||2/4N0

)]
=

nr∏
n=1

[
1

1 + d−αdr λnEr/N0

]
(3.40)



www.manaraa.com

23

which is derived in [57] for nr × 1 MISO channel and λn are the eigenvalues of code-difference

matrix. The eigenvalues for TD mode are given by λ1 = λ2 = (pa,0 ⊕ pb,0) where pa,0 =

x1 ⊕ x2 ⊕ x3 ⊕ x4 and that for SM mode are given by λ1 =
∑2

i=1(pa,i ⊕ pb,i) and λ2 = 0 where

pa,i are defined in (4.5). Then, (4.10) can be expressed as

Pr (ca → cb)
SM ≤ 1

2

4∏
i=1

1

1 + (xa,i ⊕ xb,i)γs
·

[
1

1 +
∑2

i=1(pa,i ⊕ pb,i)γr

]

Pr (ca → cb)
TD ≤ 1

2

4∏
i=1

1

1 + (xa,i ⊕ xb,i)γs
·
[

1

1 + (pa,0 ⊕ pb,0)γr

]2
(3.41)

where ⊕ denotes mod-2 addition (XOR) and γs = d−αds Es/N0, γr = d−αdr Er/N0 are the receive

signal-to-noise ratio at the destination from the source node and relay node, respectively. The

union bound on the probability of decoding error, for a given error pattern e1, is given by

PE (e1)SM or TD ≤
∑
cb 6=ca

Pr (ca → cb)
SM or TD (3.42)

Averaging (4.16) over all possible codeword in Table C.1 yields

PE (e1)SM ≤ 4

(
1

1 + γ̄s

)(
1

1 + γ̄r

)
+ 2

(
1

1 + γ̄s

)2

+ 4

(
1

1 + γ̄s

)2( 1

1 + 2γ̄r

)
+ 4

(
1

1 + γ̄s

)3( 1

1 + γ̄r

)
+

(
1

1 + γ̄s

)4

PE (e1)TD ≤ 4

(
1

1 + γ̄s

)(
1

1 + γ̄r

)2

+ 6

(
1

1 + γ̄s

)2

+ 4

(
1

1 + γ̄s

)3( 1

1 + γ̄r

)2

+

(
1

1 + γ̄s

)4

(3.43)

where the error event e1 occurs with probability P (e1) =
∏4
i=1(1− pe,ri) and pe,ri = P (ei = 1)

indicate the link error probability between i th source and the relay.

The union bound for other error patterns are presented in Appendix C. Hence, the average

decoding error probability for adaptive network coding is given by

P (E)SM or TD =
16∑

ei,i=1

P (ei) · PE(ei)
SM or TD. (3.44)

where PE(ei)
SM or TD and P (ei) are derived in (C.1)-(C.31). Based on the decoding error

probability analysis, we observe that for TD mode, we can control the dominant term in the

error probability and eventually determine the diversity order of the system by changing the
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SNR ratio between relay and source GD = γr/γs. For example, consider the union bound for

error pattern e1 in (3.38). At high SNR, the two dominant terms in PE (e1)TD are given as

follows

PE (e1)TD ≤ 4

(
1

1 + γs

)(
1

1 + γr

)2

+ 6

(
1

1 + γs

)2

≤
(

1

1 + γs

)[
4

(
1

1 + γr

)2

+ 6

(
1

1 + γs

)]
.

(3.45)

If 4
(1+γr)2

< 6
(1+γs) ( i.e, (1 + γr)

2/(1 + γs) ≥ 2/3→ γ2
r/γs ≥ 2/3 at high SNR ), then the second

term is dominant and the diversity order PE (e1)TD is 2. However, if 4/(1 + γr)
2 > 6/(1 + γs)

( i.e, (1 + γr)
2/(1 + γs) < 2/3 → γ2

r/γs < 2/3 at high SNR ), then the first term is dominant

and the diversity order PE (e1)TD become 3. This characteristic of TD mode is well captured

in Fig. 3.4. We note that γ2
r/γs = G2

D × γb/(1 + 0.5GD) is a strictly increasing function of

the SNR ratio GD = γr/γs for a fixed γb. For SNR ratio GD above a threshold, the decoding

error probability curve decrease with diversity order 2, whereas for GD below the threshold,

the decoding error probability decrease with diversity order higher than 2. The reason why

we have this type of characteristic can be explained as follows. For coding perspective, the

codebook Table C.1 has minimum distance dmin = 2, so we have coding diversity 2. For path

diversity perspective, however, each information bit xi has overall path diversity 3, because the

source to destination link provide diversity 1 and relay to destination link provide additional

diversity 2 by using beamforming. Since coding diversity 2 term and path diversity 3 term

co-exist in the decoding error probability of TD mode, we can control the dominant term in

the error probability and determine the diversity order of the system by changing the SNR ratio

GD = γr/γs. However, for SM mode, each information bit xi has path diversity 2 since the relay

to destination link provides diversity 1, and the coding diversity is still 2 (i.e., dmin = 2). Hence,

the decoding error probability curve for SM mode decrease with diversity order 2 regardless to

the SNR ratio GD as illustrated in Fig. 3.5.

3.5 Numerical Results

In this section, we present numerical results, assuming that each source is located at unit

distance from the destination, and at angle θ = (θ1, θ2, θ3, θ4) = (−π6 ,
−π
3 ,

π
3 ,

π
6 ). We assume
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that the transmit energy per information bit Eb = (4Es + 2Er)/4 is fixed and the path loss

exponent is α = 4.

Fig. 3.6. shows the end-to-end outage probability versus γr/(γr + γs) for two values of

received SNR per information bit γb (dB). We can see that for γr/(γr + γs) above a threshold

(0.3 ∼ 0.4), SM is better than TD. This is because the additional improvement of reliability on

the relay-to-destination link offered by TD mode does not help much in reducing the end-to-end

outage probability when the relay-to-destination link SNR γr is high enough. For a given γb, an

increase of γr requires a decrease of γs which makes pSM negligible than pds in (3.27). Hence,

it is better to combine two source nodes at a time and send the encoded data in SM mode to

have a smaller end-to-end outage probability.

Fig. 3.7. shows the end-to-end outage probability versus received SNR per information bit

γb = (4γs + 2γr)/4 with γr/γs optimized for each γb. We can see that if γb is above a threshold

SM provides a lower end-to-end outage probability while for γb below the threshold, the outage

probability can be lowered by not using the relay. Fig. 3.8. compares adaptive network coding

in (3.32) to convectional network coding in (3.1), (3.2) for the same network in Fig. 3.7. The

end-to-end outage probability of adaptive network coding is lower than conventional case, but

the SNR advantage is not significant (i.e., less than 0.2 dB).

Fig. 3.9. shows that the end-to-end outage probability versus the rate R. We can see that

for R below a threshold SM provides a lower outage probability than TD while for R above

the threshold TD provides a lower outage probability than SM.

Fig. 3.10. shows the decoding error probability versus source transmit energy Es/N0 at

several relay location. We see that once the relay is located near the destination node, SM

mode provides more reliability than TD mode. As the relay move closer to the source node,

the error probability of TD mode becomes smaller than that of SM mode. For target error

PE = 10−4, TD mode obtain 3 dB SNR gain per each source node comparing to SM mode at

ddr = 0.5 and 5 dB SNR gain at ddr = 0.9. The x-axis in Fig. 3.10. represent the source to relay

channel quality. As Es/N0 decrease, the source to relay channel becomes more noisy, and vice

versa. We note that for noisy S → R channel (i.e., Es/N0 ↓), the optimal transmission mode is

SM mode, whereas for reliable S → R channel (i.e., Es/N0 ↑), the optimal transmission mode
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is TD mode.

Fig. 3.11, shows the decoding error probability versus relay location ddr for several source

transmit energy Es/N0. We observe the same trend as the previous figure that SM mode is

optimal for small ddr and TD mode becomes optimal for large ddr. The x-axis in Fig. 3.11.

represent the relay to destination channel quality. As ddr increase, the path lose between relay

and destination increases and the channel becomes noisy. We note that for noisy R → D

channel (i.e., ddr ↑), the optimal transmission mode is TD mode, whereas for reliable R → D

channel (i.e., ddr ↓), the optimal transmission mode is SM mode.

3.6 Conclusion

We considered a multiple access relay network where once each source transmits a chan-

nel coded packet, the relay decodes the transmitted packet, generates network coded packet,

and re-transmits it. We assumed multiple antennas at the relay and considered two MIMO

transmission modes at the relay; spatial multiplexing (SM) and beamforming as transmit diver-

sity (TD). We applied different network coding schemes depending on the MIMO transmission

modes. We derived the outage probability with the maximum likelihood decoding at the desti-

nation, and investigated the effect of MIMO transmission modes at the relay, coding rate from

each source, relay locations, and different network coding schemes on the outage probability.

We proposed an optimal MIMO mode selection sheme which depends on channel coding from

the source, network coding at the relay, and MIMO transmission modes.



www.manaraa.com

27

Table 3.1 Adaptive parity generation rule

Error Pattern SM TD

ei = (e1, e2, e3, e4) p1 p2 p0

e1 : 0 0 0 0 x1 ⊕ x2 x3 ⊕ x4 x1 ⊕ x2 ⊕ x3 ⊕ x4

e2 : 0 0 0 1 x1 ⊕ x2 x3 x1 ⊕ x2 ⊕ x3

e3 : 0 0 1 0 x1 ⊕ x2 x4 x1 ⊕ x2 ⊕ x4

e4 : 0 1 0 0 x1 x3 ⊕ x4 x1 ⊕ x3 ⊕ x4

e5 : 1 0 0 0 x2 x3 ⊕ x4 x2 ⊕ x3 ⊕ x4

e6 : 0 0 1 1 x1 ⊕ x2 x1 ⊕ x2 x1 ⊕ x2

e7 : 0 1 0 1 x1 x3 x1 ⊕ x3

e8 : 1 0 0 1 x2 x3 x2 ⊕ x3

e9 : 0 1 1 0 x1 x4 x1 ⊕ x4

e10 : 1 0 1 0 x2 x4 x2 ⊕ x4

e11 : 1 1 0 0 x3 ⊕ x4 x3 ⊕ x4 x3 ⊕ x4

e12 : 1 1 1 0 x4 x4 x4

e13 : 1 1 0 1 x3 x3 x3

e14 : 1 0 1 1 x2 x2 x2

e15 : 0 1 1 1 x1 x1 x1

e16 : 1 1 1 1 ∅ ∅ ∅
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Figure 3.1 Symmetric multiple access relay network.
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Figure 3.2 Frame structure of non-cooperative network and cooperative relay network, K =

4.
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CHAPTER 4. ACHIEVABLE RATE AND RELIABILITY-RATE

TRADEOFF

In this chapter, we consider random linear coding in noisy multiple-access relay channel

where each relay is equipped with multiple antennas and sends the network coded information

to the destination using three MIMO transmission modes: spatial multiplexing (SM), transmit

diversity (TD), and Golden code (GC). SM mode allows to send more coded bits than TD

mode, thereby increasing the Hamming distance at the cost of sacrificing the diversity gain,

and vice versa. We derive the probability of decoding error with the maximum likelihood

decoding at the destination and determine the fundamental tradeoff among rate, reliability,

and MIMO mode. The tradeoff provides a complete view on the reliability-rate tradeoff for

each MIMO mode at any given SNR, and shows how the energy and node density can be traded

in achieving a given reliability-rate pair.

4.1 Introduction

We consider a multiple-access relay channel (MARC) where multiple sources communicate

with a single destination with the help of multiple relays. Examples of such scenarios include

next-generation cellular systems such as those envisaged in the 802.16m standard, hybrid wire-

less LAN/WAN networks, and sensor and ad hoc networks where cooperation between the

sources is either undesirable or not possible, but one can use relays to aid communication

between multiple sources and the destination.

In [86], Kim investigated the tradeoff between reliability and rate as a function of node

density and SNR, and showed how the energy and node density can be traded in achieving

a given reliability-rate pair in single antenna case. We extend the work of [86] to the case
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of multiple antennas at the relay and destination nodes. Each relay independently generates

parity bits using random linear coding rule and forwards to the destination after space-time

encoding. We consider spatial multiplexing (SM), transmit diversity (TD) using Alamouti

code, and Golden code (GC) [53] as space-time codes. SM mode allows to send more parity

bits than TD mode, thereby increasing the Hamming distance at the cost of sacrificing the

diversity gain, and vice versa. We derive the probability of decoding error with the maximum

likelihood decoding at the destination and investigate the effect of MIMO transmission mode

of relay nodes on the probability of decoding error at the destination. The inherent tradeoff

between the Hamming distance gain offered by SM mode and the diversity gain offered by TD

mode has been investigated in point-to-point communication systems [54], [55]. We investigate

the effect of MIMO transmission mode of relay nodes on the probability of decoding error at

the destination in multiple access relay network with random linear network coding.

The remainder part of this chapter is organized as follows. System model is described in

Section II. The union bound on the probability of decoding error is derived in Section III, and

the asymptotic analysis is performed in Section IV. Section V presents numerical results and

Section VI concludes the chapter.

4.2 System Model

We consider a multiple access relay network in which K sources send packets to a common

destination with the assistance of R relays, as illustrated in Fig. 4.1. We assume each node

has multiple antennas and denote the number of antennas to be nS , nR, nD for source, relay

and the destination, respectively. For simplicity of the presentation, we consider the case of

(nS , nR) = (1, 2) but the analysis in this paper can be extended to a general combination of

(nS , nR). By this constraint, the channel model classifies into two classes. First, we have a

SIMO channel between source to relay and between source to destination. For SIMO channel,

the receiver use maximum ratio combining (MRC) as receive diversity. Second, we have MIMO

channel between relay to destination where the relay use the three transmission modes: Spatial

Multiplexing (SM), Alamouti Coding as Transmit diversity (TD) and Golden Code (GC) [53].

The communication protocol consist of two-phase transmission. In the first phase, each K
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source transmits a packet ui over the orthogonal channel

ui = (u1,i, u2,i, · · · , un,i)T , um,i ∈ {0, 1} (4.1)

and the subscript i denotes the i-th source. Due to the broadcast nature of the wireless medium,

each relay may also overhear the packets u1,u2, · · · ,uK . However, in practice, the relays may

be far away from the sources so that the channels between sources and relays are subject to

error. After decoding, each relay checks for errors using the cyclic redundancy check (CRC)

code. In general, the number of correctly decoded packets at a relay is a random variable.

In the second phase, each relay stores the correctly decoded packets in a two-dimensional

array. If we let Sj denote the set of indices for correctly decoded packets at the j-th relay,

then the array size is n× |Sj |, where |Sj | denotes the number of elements in the set Sj . Then,

each relay generates L parity bits for each row of the array and sends them to the destination,

where L depends on the relay transmission mode. If the relay is equipped with two antennas,

the following space-time matrix may be considered:

XSM =

 vm,1 vm,3

vm,2 vm,4

 SM Mode (4.2)

XTD =

 vm,1 −v∗m,2

vm,2 v∗m,1

 TD Mode (4.3)

XGC =
1√
5

 α(vm,1 + vm,2θ) α(vm,3 + vm,4θ)

ᾱi(vm,3 + vm,4θ̄) ᾱ(vm,1 + vm,2θ̄)

 GC Mode (4.4)

where L = 4 for SM and GC modes and L = 2 for TD mode, θ = 1−θ̄ = (1 +
√

5)/2, α = 1+θ̄i,

and ᾱ = 1 + θi. The destination, after collecting K message bits from K sources and RL(= P )

-parity bits from R relays, may construct a (K +P,K) code whose m-th codeword cm is given

by

cm = (um,1, um,2, · · · , um,K︸ ︷︷ ︸
um

, vm,1, vm,2, · · · , vm,P︸ ︷︷ ︸
vm

) (4.5)
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where the parity vector vm is given by

vm = (vm,1, vm,2, · · · , vm,P )

= (vm,1, vm,2, · · · , vm,L︸ ︷︷ ︸
1st Relay

, vm,L+1, · · · , vm,2L︸ ︷︷ ︸
2nd Relay

, vm,2L+1, · · · , vm,RL)
(4.6)

The k-th parity bit vm,k ∈ {0, 1}, 1 ≤ k ≤ P is generated by the following random linear

combining rule

vm,k =
∑
i∈Sj

gk,ium,i, vm,k ∈ {0, 1} (4.7)

where the network encoding coefficients {gj,i} are independently and randomly chosen from

{0, 1} and the summation is mod-2 addition. The number of generated parity bit L is deter-

mined by the transmission mode at each relay. For MIMO channel with 2 transmit antennas,

the relay transmit 2× 2 space-time (ST) matrix XRD as follows and the number of generated

parity bits L are L = 4 for SM, GC mode and L = 2 for TD mode.

Then, the destination may construct n×(K+P ) array by combining K column vectors from

source nodes and P parity vectors from the relay nodes, as illustrated in Fig. 4.1. Due to the

distributed nature of encoding at the relay nodes, the coding coefficients {gk,i} are transmitted

to the destination as a packet hearer, so that it can decode the source packets.

We assume that the channel links are composed of large-scale path loss and small-scale

quasi-static frequency non-selective Rayleigh fading and the channel gain hij is modeled by

hij =
√
d−αij · gij (4.8)

where dij denote the distance between node i and j , α is the path loss exponent and gij captures

the channel fading characteristic due to the rich scattering environment. The Rayleigh fading

gij is modeled as a Gaussian random variable with mean zero and variance 0.5 per dimension.

The background noise Wij is modeled by a Gaussian random variable with mean zero and

variance N0/2 per dimension. We assume that the bits of source and relay are transmitted

using BPSK modulation with symbol energies Es and Er, respectively. Hence, the transmit

energy Eb per information bit is given by (KEs + 4REr)/K.
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4.3 Probability of Decoding Error

In this section, we derive the union bound on the probability of decoding error with the

maximum likelihood (ML) decoding at the destination, averaged over all possible encoding

rules at the relays and compare the error probability of three transmission modes.

Let ca = (ua,1, · · · , ua,K , va,1, · · · , va,P ) and cb = (ub,1, · · · , ub,K , vb,1, · · · , vb,P ) be two dis-

tinct row codewords of length K + P in Fig. 4.1, where ua,i ∈ {0, 1} is the information bit

from the i-th source and va,k ∈ {0, 1} is the k-th network coded parity bit from the relay. Let

ds,i denote the distance between the i-th source and the destination, and dr,j be the distance

between the j-th relay and the destination. Then, the conditional pairwise error probabil-

ity with the maximum likelihood (ML) of each transmission mode for a given distance vector

d = {ds,1, · · · , ds,K , dr,1, · · · , dr,R} is given by 1

Pr (ca → cb|d)SM,GC ≤ 1

2

K∏
i=1

[
1

1 + d−αs,i |xa,i − xb,i|2/(4N0)

]nD

·
R∏
j=1

[
1

1 + d−αr,j λ1/(4N0)
· 1

1 + d−αr,j λ2/(4N0)

]nD

Pr (ca → cb|d)TD ≤ 1

2

K∏
i=1

[
1

1 + d−αs,i |xa,i − xb,i|2/(4N0)

]nD

·
R∏
j=1

[
1

1 + d−αr,j [|ya,1 − yb,1|2 + |ya,2 − yb,2|2] /(4N0)

]2nD

(4.9)

where xa,i = (−1)ua,i
√
Es and ya,k = (−1)va,k

√
Er are BPSK constellations corresponding to

the parity bits ua,i and va,k, respectively. λ1, λ2 are the eigenvalues of ∆XRD · ∆XH
RD where

∆XRD = XRD,a −XRD,b and XRD,m is the space-time matrix for corresponding transmission

mode given by (4.2)-(4.4). The factor 1/2 follows from the exponential approximation to Q-

function ( Q(x) ≤ e−x2/2/2 for x ≥ 0 ). Then, the union bound on the probability of decoding

error, conditioned on the distance vector d and the network encoding rule ca and cb, is given

by

PE (ca, cb,d) ≤
∑
cb 6=ca

PE (ca → cb|d) (4.10)

1The first term on the right hand side of (4.9) is derived in [56] for nD branch MRC and the second term on
the right hand side of (4.9) is derived in [57] for nR × nD MIMO.
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Without loss of generality, assume ua,i = 1 for all i. Suppose that the weight of (ub,1, ub,2, · · · , ub,K)

is W, i.e. wH(ua ⊕ ub) = wH(ua,1 ⊕ ub,1, · · · , ua,K ⊕ ub,K) = K −W . Then, the first term on

the right hand side of (4.9) is given by

K∏
i=1

[
1

1 + d−αs,i |xa,i − xb,i|2/(4N0)

]nD

=
K−W∏
i=1

[
1

1 + d−αs,(i)γs

]nD

(4.11)

where ds,(i) is the distance between (i)-th source and the destination for which xa,(i) 6= xb,(i) and

γs = Es/N0 is the transmit signal-to-noise ratio for the source symbol. Similarly, the second

term on the right hand side of (4.9) for TD mode can be expressed as

R∏
j=1

[
1

1 + d−αr,j (
∑2

l=1 |ya,l − yb,l|2)/(4N0)

]2nD

=

R∏
j=1

[
1

1 +
∑2

l=1(va,l ⊕ vb,l)d−αr,j γr

]2nD

(4.12)

where γr = Er/N0 is the transmit signal-to-noise ratio for the relay symbol.

Since, given W = w, there are
(
K
w

)
vectors (ub,1, ub,2, · · · , ub,K) whose weight is w, it follows

from (4.9)-(4.12) that the union bound in (4.10) is given by

PE (va,vb,d)SM,GC ≤ 1

2

K−1∑
w=0

(
K

w

)K−w∏
i=1

[
1

1 + d−αs,(i)γs

]nD

·
R∏
j=1

[
1

1 + d−αr,j λ1/(4N0)
· 1

1 + d−αr,j λ2/(4N0)

]nD

PE (va,vb,d)TD ≤ 1

2

K−1∑
w=0

(
K

w

)K−w∏
i=1

[
1

1 + d−αs,(i)γs

]nD

·
R∏
j=1

[
1

1 +
∑2

l=1(va,l ⊕ vb,l)d−αr,j γr

]2nD

(4.13)

where the eigenvalues λ1, λ2 are functions of (va,l ⊕ vb,l) as shown in Table 4.1.

In Lemma 1 of [86], it is shown that the probability mass function of (va,l⊕ vb,l) is given by

Pr(va,l ⊕ vb,l = 1|W,Sj) = Pr(va,l ⊕ vb,l = 0|W,Sj) =
1

2
(4.14)

when ua,i = 1 for all i. Although the uniformness of (va,l ⊕ vb,l) is proved for the special case

when all one codeword is transmitted, we used Monte Carlo simulation to show that even if we

transmit a random codeword with arbitrary weight wH(ua), the decoding error probability is

still virtually identical. Fig. 4.7 shows the probability of decoding error PE(d) versus Eb/N0

for codewords with different Hamming weight. The dotted line corresponds to the case when



www.manaraa.com

45

all one codeword wH(ua) = K is transmitted and the solid line with circle marker is the case

when ua,i ∈ {0, 1} is randomly chosen between 0 and 1. We note that two curves has virtually

identical error probability.

Then, we average (4.14) over Sj as follows.

Pr(va,l ⊕ vb,l|W ) =
K∑
|Sj |=0

P (|Sj |)Pr(va,l ⊕ vb,l|W,Sj) =
1

2
(4.15)

Since the random linear network coding (4.7) is performed independently, the probability of

each network encoding rule are uniform as follows.

P (va ⊕ vb|W ) = P (va,1 ⊕ vb,1, va,2 ⊕ vb,2, · · · , va,P ⊕ vb,P |W )

= P (va,1 ⊕ vb,1|W )P (va,2 ⊕ vb,2|W ) · · ·P (va,P ⊕ vb,P |W )

=

(
1

2

)P
=

(
1

2L

)R
, P = RL

(4.16)

Averaging the probability of decoding error in (4.13) over the network encoding rule va,vb

using (4.16) yields

PE(d)SM,GC ≤
1

2

K−1∑
w=0

(
K

w

)K−w∏
i=1

[
1

1 + d−αs,(i)γs

]nD

·
R∏
j=1

 1

24

∑
va,l⊕vb,l
l=1,··· ,4

[
1

1 + d−αr,j λ1/(4N0)
· 1

1 + d−αr,j λ2/(4N0)

]nD


(4.17)

PE(d)TD ≤
1

2

K−1∑
w=0

(
K

w

)K−w∏
i=1

[
1

1 + d−αs,(i)γs

]nD

·
R∏
j=1

 1

22

∑
va,l⊕vb,l
l=1,2

[
1

1 +
∑2

l=1(va,l ⊕ vb,l)d−αr,j γr

]2nD


(4.18)

For TD mode, there are 4 available combination of (va,1 ⊕ vb,1, va,2 ⊕ vb,2); (00, 01, 10, 11). By

applying each case into the second part on the right hand side of (4.17), we obtain

1

22

∑
va,l⊕vb,l
l=1,2

[
1

1 +
∑2

l=1(va,l ⊕ vb,l)d−αr,j γr

]2nD

=
1

22

[
1 +

2

(1 + d−αr,j γr)
2nD

+
1

(1 + 2d−αr,j γr)
2nD

]

(4.19)
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for TD mode. For SM and GC mode, the eigenvalues of ∆XRD ·∆XH
RD should be evaluated

for all possible combination of va,l ⊕ vb,l, l = 1, · · · , 4. We derived the eigenvalues for each

transmission mode in Table 4.1 2 and substituted these values into the second part on the right

hand side of (4.17) to obtain

1

24

∑
va,l⊕vb,l
l=1,··· ,4

[
1

1 + d−αr,j λ1/(4N0)
· 1

1 + d−αr,j λ2/(4N0)

]nD

=
1

24

[
1 +

4

(1 + d−αr,j γr)
nD

+
4

(1 + 2d−αr,j γr)
nD

+
2

(1 + d−αr,j γr)
2nD

+
4[

(1 + (6− 2
√

5)d−αr,j γr/4)(1 + (6 + 2
√

5)d−αr,j γr/4)
]nD

+
1

(1 + 4d−αr,j γr)
nD


(4.20)

for SM mode. Then, the union bound of decoding error probability is given by

PE(d)SM ≤
1

2

K−1∑
w=0

(
K

w

)K−w∏
i=1

[
1

1 + d−αs,(i)γs

]nD

·
R∏
j=1

1

24

[
1 +

4

(1 + d−αr,j γr)
nD

+
4

(1 + 2d−αr,j γr)
nD

+
2

(1 + d−αr,j γr)
2nD

+
4[

(1 + (6− 2
√

5)d−αr,j γr/4)(1 + (6 + 2
√

5)d−αr,j γr/4)
]nD

+
1

(1 + 4d−αr,j γr)
nD


PE(d)TD ≤

1

2

K−1∑
w=0

(
K

w

)K−w∏
i=1

[
1

1 + d−αs,(i)γs

]nD

·
R∏
j=1

1

22

[
1 +

2

(1 + d−αr,j γr)
2nD

+
1

(1 + 2d−αr,j γr)
2nD

]

(4.21)

The corresponding union bound for GC mode can be obtained similarly.

4.4 Asymptotic analysis and reliability-rate tradeoff

In this section we provide asymptotic analysis and compare the tradeoff between communi-

cation reliability and achievable rate for each transmission mode. To simplify the formulation,

we assume that all source nodes are located at distance ds,i = 1 from the destination and each

relay nodes utilize power control to compensate the path loss between j-th relay to destination

channel, such that the received SNR at the destination is d−αr,j γr,j = γr for all j. We denote the

2Table 4.1 is evaluated in Appendix D.
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first part on the right hand side of (4.21) as gnD(γs)

gnD(γs) =

[
1

1 + γs

]nD

(4.22)

and the second part on the right hand side of (4.21) as gSM (γr) for SM mode

gSM (γr) =

[
4

(1 + γr)nD
+

4

(1 + 2γr)nD
+

2

(1 + γr)2nD

+
4[

(1 + (6− 2
√

5)γr/4)(1 + (6 + 2
√

5)γr/4)
]nD

+
1

(1 + 4γr)nD

] (4.23)

and gTD(γr) for TD mode as follows.

gTD(γr) =

[
2

(1 + γr)2nD
+

1

(1 + 2γr)2nD

]
(4.24)

gGC(γr) for GC mode is provided in Appendix E. We note that (gnD(γ), gSM (γ), gGC(γ), gTD(γ))

are all decreasing functions of γ and converge to zero as γ →∞.

lim
γ→∞

gnD(γ) = lim
γ→∞

gSM (γ) = lim
γ→∞

gGC(γ) = lim
γ→∞

gTD(γ) = 0 (4.25)

Substituting (gnD(γ), gSM (γ), gGC(γ), gTD(γ)) in (4.21) yields

PE(d)SM ≤
1

2

K−1∑
w=0

(
K

w

)
gK−wnD

(γs)

[
1

24
(1 + gSM (γr))

]R
PE(d)GC ≤

1

2

K−1∑
w=0

(
K

w

)
gK−wnD

(γs)

[
1

24
(1 + gGC(γr))

]R
PE(d)TD ≤

1

2

K−1∑
w=0

(
K

w

)
gK−wnD

(γs)

[
1

22
(1 + gTD(γr))

]R
.

(4.26)

The decoding error probability (4.26) indicate the following two aspects. First, as γs, γr →

∞, the parity part of (4.26) converge to the constant term (1/2L)R and the average codeword

error probability achieve diversity order nD for all three transmission modes as follows.

PE(d)
.
=

1

2

K−1∑
w=0

(
K

w

)K−w∏
i=1

[
1

1 + γs

]nD

·
(

1

2L

)R
.
=

K

2RL+1

[
1

1 + γs

]nD .
= γ−nD

s

(4.27)

Second, the decoding error probability of each transmission mode has the following inequal-

ity.

PE(d)GC ≤ PE(d)SM ≤ PE(d)TD (4.28)
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where GC mode delivers the lowest error probability and TD mode provides the highest error

probability. The decoding error probability of SM mode is slightly larger than that of GC

mode at low SNR, however, at high SNR, two transmission mode provides virtually identical

decoding error probability. The difference between error probability of SM and that of TD

mode at high SNR is

lim
γs,γr→∞

(PE(d)TD − PE(d)SM) = lim
γs,γr→∞

1

2

K−1∑
w=0

(
K

w

)K−w∏
i=1

[
1

1 + γs

]nD
[

1

22R
− 1

24R

]

=
1

2

K−1∑
w=0

(
K

w

)K−w∏
i=1

[
1

1 + γs

]nD

·
[

22R − 1

24R

]
.

(4.29)

The performance advantage of GC over SM mode results from the fact that space-time matrix

XRD for GC mode always guaranty rank 2 for any combination of va,l ⊕ vb,l, l = 1, · · · , 4,

whereas XRD for SM mode has rank 2 for only a particular combination of va,l ⊕ vb,l as shown

in Table 4.1. Thus, we have the following inequalities

gGC(γr) ≤ gSM (γr) ⇐⇒ PE(d)GC ≤ PE(d)SM (4.30)

as illustrated in Fig. ??. The error probability gap between GC and SM mode is

lim
γr→∞

(PE(d)GC − PE(d)SM) = lim
γr→∞

1

2

K−1∑
w=0

(
K

w

)K−w∏
i=1

[
1

1 + γs

]nD
[

1

24R
− 1

24R

]
= 0. (4.31)

where the performance disadvantage of TD comparing to that of SM and GC mode results

from the constant term 1/2L in (4.26). Even though TD provides higher diversity order than

SM mode, 1/2L is the dominating factor of the error probability, such that the transmission

mode with higher L always have a smaller decoding error probability. The constant term 1/2L

corresponds to the probability of choosing an encoding scheme which generates same parity

vector for two distinct codeword ca and cb which has the highest error probability. Since this

worst case event occurs with probability 1/2L, choosing a transmission mode with larger L is

more effective than choosing a mode with higher diversity order. Based on this observation,

we propose optimal mode selection scheme.

• Optimal Mode Selection

Optimal mode selection scheme for MIMO-MARC with random linear network coding is

to choose a transmission mode which generates more parity bits.
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From (4.26), we obtain

PE(d)SM ≤
1

2

K−1∑
w=0

(
K

w

)
gK−wnD

(γs)

[
1

2L
(1 + gSM (γr))

]R
, L = 4

=
1

2

[
(1 + gnD(γs))

K − 1
]
·
[

1

2L
(1 + gSM (γr))

]R
≤ 1

2
(1 + gnD(γs))

K

[
1 + gSM (γr)

2L

]R
≤ 2−K·ESM (K,R)

(4.32)

where

ESM (K,R) = log2

[
{2L/ (1 + gSM (γr))}R/K

1 + gnD(γs)

]∣∣∣∣∣
L=4

(4.33)

is the error exponent or reliability function of SM mode. Similarly, we obtain the error exponent

of GC and TD mode as follows.

EGC(K,R) = log2

[
{2L/ (1 + gGC(γr))}R/K

1 + gnD(γs)

]∣∣∣∣∣
L=4

ETD(K,R) = log2

[
{2L/ (1 + gTD(γr))}R/K

1 + gnD(γs)

]∣∣∣∣∣
L=2

(4.34)

The error exponent indicate that the probability of decoding error decays exponentially with

the number of source nodes K and the decaying factor depends on the error exponent. As the

rate K/(K+R) increases (or R/K decreases), the error exponent E(K,R) decays linearly with

R/K or inverse linearly with rate K/(K + R) The inverse proportion between error exponent

E(K,R) and the rate K/(K + R) is commonly known as the fundamental tradeoff between

communication reliability and information rate. We note that the mode with larger L has a

higher error exponent E(K,R) as illustrated in Fig. 4.8.

As K,R→∞ while the rate K/(K +R) is held constant, the probability of decoding error

can be made arbitrarily small if E(K,R) > 0 or equivalently

K

K +R

∣∣∣∣
SM

<

[
1 +

log2(1 + gnD(γs))

log2 (24/(1 + gSM (γr)))

]−1

K

K +R

∣∣∣∣
GC

<

[
1 +

log2(1 + gnD(γs))

log2 (24/(1 + gGC(γr)))

]−1

K

K +R

∣∣∣∣
TD

<

[
1 +

log2(1 + gnD(γs))

log2 (22/(1 + gTD(γr)))

]−1

(4.35)

The right hand side of (4.35) is called the achievable rate in symbols per channel use.
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4.5 Numerical Results

In this section we provide numerical results. Fig. 4.2 compares the probability of decoding

error PE(d) obtained from simulation and the union bound in (4.21). The SNR gap between

union bound (solid line) and simulation result (dotted line) is about 3 dB at PE(d̄) = 10−3

which is caused by Q-function approximation. This gap can be removed by using tighter bound

as follows.

Q(
√
x+ y)

Q(
√
x)

≤ e−y/2, x, y ≥ 0 (4.36)

Both numerical and simulation shows that TD mode has the highest error probability, whereas

SM, GC has virtually identical decoding error probability for dRD = 0.5.

Fig. 4.3 shows the probability of decoding error PE(d) versus Eb/N0 for different number

of receive antennas nD at the destination. We can see that the red curves with single antenna

has diversity order 1, whereas the blue curves with two antennas has diversity order 2 as we

analyzed in (4.27).

Fig. 4.4 shows the probability of decoding error PE(d) versus relay location dr,D when there

is a single relay. We find that the error probability of TD mode is larger than that of SM mode

and the gap (PE(d)TD −PE(d)SM ) for high SNR is calculated in (4.29). The error probability

of GC mode is smaller than that of SM mode when the received SNR at the destination is small

(dr,D is large). However, as the received SNR increases (dr,D decreases), the error probability

of GC and SM mode becomes virtually identical as we shown in (4.30), (4.31).

Fig. 4.5 shows the probability of decoding error PE(d) versus Eb/N0 for 4 different mode

selection scenarios when 10 source nodes are assisted by 9 relay nodes. We assume that all

relay node use GC mode for case 1, SM mode for case 2 and TD mode for case 3. For case

4, we assume 3 of the relays use SM mode, 3 of the relays use TD mode and the remaining 3

relays use GC mode. The figure shows that using GC mode exclusively provide dominant SNR

advantage. At target PE(d) = 10−8, the SNR loss between case 1 and case 2 is 0.3 dB, case 1

and case 4 is 1.2 dB, and case 1 and case 3 is 14.8 dB.

Fig. 4.6 shows the probability of decoding error PE(d) versus Eb/N0 for different number

of relay nodes R. We can see that the error probability decreases by increasing R and the
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decreasing rate (PE(d)|R=R0
− PE(d)|R=R0+1) of adding one additional relay is given by

lim
γr→∞

(
PE(d)|R=R0

− PE(d)|R=R0+1

)
= lim

γr→∞

1

2

K−1∑
w=0

(
K

w

)K−w∏
i=1

[
1

1 + d−αs,(i)γs

]nD [
1

2LR0
− 1

2L(R0+1)

]

=
1

2

K−1∑
w=0

(
K

w

)K−w∏
i=1

[
1

1 + d−αs,(i)γs

]nD

· 1

2LR0

(
1− 1

2L

) (4.37)

and this rate diminishes by increasing the number of relays.

Fig. 4.8 shows the error exponent E(K,R) for each transmission mode versus rateK/(K+r).

We can see that error exponent of GC and SM is higher than that of TD mode. The achievable

rate K/(K+R) are 0.9789 for GC, 0.9780 for SM and 0.9609 for TD mode, which are evaluated

by using (4.35).

4.6 Conclusion

We considered randomized linear network coding over multiple antenna multiple access

relay channel where multiple sources communicate with a common destination with the help

of multiple relays. We assume internode channels are noisy and subject to channel errors. We

derived the average probability of decoding error with maximum likelihood decoding at the

destination, averaged over all possible encoding rules at the relays. We compared the decoding

error probability for each transmission mode to find the optimal mode selection scheme for

MARC with random linear network coding. We provided asymptotic analysis of the error

probability and examine the reliability-rate tradeoff for each transmission mode. The insight

provided by the analysis would be of great importance for understanding the fundamental

tradeoffs of random network coding in MIMO multiple-access relay networks.
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Table 4.1 Eigenvalues of ∆XRD ·∆XH
RD for SM and GC mode

va,l ⊕ vb,l SM Mode GC Mode

l = (1, 2, 3, 4) λ1 λ2 λ1 λ2

0 0 0 0 0 0 0 0

0 0 0 1 4Er 0 4θEr√
5

−4θ̄Er√
5

0 0 1 0 4Er 0 4θEr√
5

−4θ̄Er√
5

0 1 0 0 4Er 0 4θEr√
5

−4θ̄Er√
5

1 0 0 0 4Er 0 4θEr√
5

−4θ̄Er√
5

0 0 1 1 8Er 0 4(1+2θ)Er√
5

−4(1+2θ̄)Er√
5

0 1 0 1 8Er 0 4(
√

5+
√

3)Er√
5

4(
√

5−
√

3)Er√
5

1 0 0 1 4Er 4Er
4(
√

5+
√

3)Er√
5

4(
√

5−
√

3)Er√
5

0 1 1 0 4Er 4Er
4(
√

5+
√

3)Er√
5

4(
√

5−
√

3)Er√
5

1 0 1 0 8Er 0 4(
√

5+
√

3)Er√
5

4(
√

5−
√

3)Er√
5

1 1 0 0 8Er 0 4(1+2θ)Er√
5

−4(1+2θ̄)Er√
5

1 1 1 0 (6 + 2
√

5)Er (6− 2
√

5)Er

(
6 +

√
148
5

)
Er

(
6 +

√
148
5

)
Er

1 1 0 1 (6 + 2
√

5)Er (6− 2
√

5)Er

(
6 +

√
148
5

)
Er

(
6 +

√
148
5

)
Er

1 0 1 1 (6 + 2
√

5)Er (6− 2
√

5)Er

(
6 +

√
148
5

)
Er

(
6 +

√
148
5

)
Er

0 1 1 1 (6 + 2
√

5)Er (6− 2
√

5)Er

(
6 +

√
148
5

)
Er

(
6 +

√
148
5

)
Er

1 1 1 1 16Er 0 4(2
√

5+3
√

2)Er√
5

4(2
√

5−3
√

2)Er√
5
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Figure 4.1 Symmetric Multiple Access Relay Channel
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CHAPTER 5. INTERFERENCE CANCELLATION IN MULTI-USER

MIMO SYSTEMS

In this chapter, we analyze log-likelihood-ratio (LLR) ordered successive interference can-

cellation (SIC) scheme in multi-user, multi-mode, multi-input multi-output (MIMO) systems

where each user may choose between two operation modes: spatial multiplexing or beamform-

ing. The main idea is to detect and cancel the user signal in order of LLR which provides a

posteriori information about the reliability of detection. The simulation results indicate that

LLR-ordered SIC provides 1 ∼ 3dB gain over the conventional SNR-ordered SIC in multiuser

MIMO system and the gain increases with increasing number of users. The impact of the

knowledge of transmit mode at the receiver and the knowledge of the optimum transmit mode

at the transmitter is analyzed in different SIC schemes.

5.1 Introduction

Recently, there has been considerable research in exploiting the space dimension through

transmit diversity, space-time coding, and spatial multiplexing that employ multiple transmit

and/or receive antennas [58]. Spatial multiplexing enables a high data rate, whereas diversity

enables a high reliability. In multi-user environment, receiver antenna arrays have long been

recognized as an effective technique for mitigating co-channel interference (CCI) [59]. The value

of CCI mitigation is that it enables a better frequency reuse and hence improves the spectrum

efficiency. That is, different users may simultaneously transmit in the same frequency band.

One popular method to mitigate CCI is successive interference cancellation (SIC) which is

composed of three parts: nulling, cancelling, and ordering. The conventional SIC detects the

user signal that provides the maximum signal-to-noise ratio (SNR) and cancels the correspond-
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ing user from the received signal, updates the channel matrix, and repeats this process until

all user signals are detected [60]. In reference [61], a new ordering technique based on the log-

likelihood ratio (LLR) is proposed in single user case. The difference between LLR ordering and

SNR ordering is that the former uses a posteriori information about the reliability of detection,

thereby minimizes the effect of error propagation. Use of this additional a posteriori informa-

tion is known to provide a significant SNR gain over the conventional SNR based ordering. In

this paper, we extend the analysis to multi-mode, multi-user MIMO case, where each user may

choose to use either spatial multiplexing (SM) or beamforming (BF) for transmission. Mode

selection between SM and transmit diversity in point-to-point (single user) communication has

been discussed in [62]. We investigate the impact of the knowledge of transmit mode at the

receiver and the knowledge of transmit mode at the transmitter in different SIC schemes.

This chapter is organized as follows. Section II describes the system model. Section III

describes LLR-ordered SIC, SNR-ordered SIC, and computational complexity analysis. Sec-

tion IV presents an adaptive operation mode selection methodology. Section V presents the

simulation results, and Section VI contains concluding remarks.

5.2 System model

We consider a synchronous multi-access communication system in which K users send

independent messages to a common receiver (e.g. uplink cellular). The system block diagram

is shown in Figure 5.1. Each user, equipped with nt antennas, transmits simultaneously over

the same frequency band to a common receiver equipped with nr receive antennas. The channel

matrix for user k is denoted by Hk which is an nr × nt matrix with each element modeled by

a complex Gaussian random variable with mean zero and variance 0.5 per dimension, and the

overall channel matrix is denoted by H = [H1, H2, · · · , HK ].

The received signal is then given by

Y =

K∑
k=1

HkXk +W (5.1)

where Xk is an nt × 1 matrix representing the transmitted signal of user k and W is a nr × 1

matrix representing the complex Gaussian noise with each component having mean zero and
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variance N0/2 per dimension.

We assume that the receiver knows the channel matrix H, but user k knows Hk only. We

assume that K/2 users (randomly selected) are in SM mode and the remaining K/2 users are

in BF mode for data transmission. In Section IV, we will consider the case where the receiver

informs each transmitter of appropriate mode of operation to further reduce the probability

of error. In SM mode different symbols are transmitted through different antenna, whereas in

BF mode the same symbol is transmitted through different antenna with different weightings.

We assume that users in SM mode use M -ary modulation and those in BF mode use Mnt-ary

modulation to maintain the same transmission rate of nt × log2M bits per symbol time. We

assume that the mode of operation of each user is known at the receiver, which can be indicated

in the packet header.

Since K users transmit simultaneously, each user experiences nT − nt interfering signals,

where nT = K × nt. We assume that there are nr(≥ nT − nt + 1) receive antennas to suppress

nT − nt interfering signals. If we let Λ(k) = [H1, H2, · · · , Hk−1, Hk+1, · · · , HK ] and N be

the null space of Λ(k), then dim(N ) + rank[Λ(k)] = nr [63]. Since rank[Λ(k)] ≤ nT − nt,

we obtain dim(N ) ≥ nr − nT + nt. Hence, we can find a set of orthonormal matrix Vk =

[vT1 , v
T
2 , · · · , vTnr−nT +nt

]T for user k, where each component vi is an nr × 1 column vector, that

satisfies the following two properties:

Vk(Vk)
H = Inr−nT +nt (5.2)

VkH = VkHk. (5.3)

Multiplying Vk to both sides of (5.1) yields

Zk = VkY = VkHkXk + VkW (5.4)

where the equality follows from (5.3). Thus, all users in the set {1, 2, · · · , k − 1, k + 1, · · · ,K}

are suppressed and only the signal from user k remains. Since Vk is unitary and W is circular

symmetric, the distributions of W and VkW are the same, but their dimensions can be different.

Then, the maximum likelihood (ML) estimate of Xk for users in SM mode after user sepa-



www.manaraa.com

64

ration is given by

X̂k = arg min
sm
||Zk − VkHksm||2. (5.5)

where sm is an nt×1 matrix representing the transmitted vector. Beamforming exploits only the

dominant mode of the channel, so the transmitter performs the singular value decomposition

(Hk = U1ΛUH2 ) on the channel matrix which is assumed to be known at the transmitter for users

in BF mode. Let σmax be the maximum of singular values λ1, λ2, ..., λr of Hk, where r is the

rank of Hk, and i∗ be the argument of max{λi}. Let u1,i∗ and u2,i∗ be the i∗th column of U1 and

U2, respectively. Then the transmitted vector Xk for users in BF mode is u2,i∗sm, where sm is

the transmitted symbol [64]. Multiplying uH1,i∗N , where N = Hk((VkHk)
H(VkHk))

−1(VkHk)
H

is the nulling vector, to (5.4) yields

Z
′
k = uH1,i∗N · Zk = σmaxsm +W

′
. (5.6)

The noise term in (5.6) is a complex Gaussian with mean zero and variance N0 · ||uH1,i∗N ||2.

Hence, the ML estimate of Xk for users in BF mode is given by

X̂k = arg min
sm
|Z ′k − σmaxsm|2. (5.7)

After detecting Xk, the estimate of Xk, X̂k, is canceled from Y to yield

Y (1) = Y −HkX̂k. (5.8)

Then, we update the channel matrix H(1) = [H1, H2, · · · , Hk−1, Hk+1, · · · , HK ] and the corre-

sponding null space.

5.3 Successive Interference Cancellation Ordering

In this section, we describe SIC ordering methods, assuming that the receiver is informed

of the transmitter’s mode of operation.

5.3.1 LLR-based Ordering

The conditional error probability given Zk in SM mode (or Z
′
k in BF mode) is given by [61]

P (X̂k 6= Xk|Zk) = 1− 1∑
m e
−Λk,m

(5.9)
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where

Λk,m = ln
p(Xk = X̂k|Zk)
p(Xk = sm|Zk)

=
||Zk − VkHksm||2 − ||Zk − VkHkX̂k||2

N0

(5.10)

is the pairwise LLR. Similarly, in BF mode

Λk,m =
|Z ′k − σmaxsm|2 − |Z

′
k − σmaxX̂k|2

N0N
′ (5.11)

where N
′

= ||uH1,i∗N ||2. The LLR-based SIC ordering is to detect and cancel in order of

minimizing P (X̂k 6= Xk|Zk) or equivalently minimizing
∑

m e
−Λk,m . This approach, utilizing

a posteriori information Zk in SM mode (or Z
′
k in BF mode), can reduce the effect of error

propagation.

5.3.2 SNR-based Ordering

The SNR-ordered SIC is to detect and cancel in order of minimizing P (X̂k 6= Xk). It follows

from (5.4) that the average probability of error in SM mode is bounded by

P (X̂k 6= Xk) ≤
∑
xj 6=xi

Q
( ||VkHk(xi − xj)||√

2N0

)
(5.12)

≤ (Mnt − 1)Q
(dmin(VkHk)√

2N0

)
(5.13)

where dmin(VkHk) = min
xi 6=xj

||VkHk(xi − xj)||. Similarly, in BF mode, the average probability of

error is bounded by (5.13) with dmin(VkHk) replaced by dmin(σmax)/
√
N ′ = min

xi 6=xj
|σmax(xi − xj)|/

√
N ′ .

Therefore, the SNR-ordered SIC is to detect and cancel users in order of maximizing dmin(VkHk)

in SM mode or dmin(σmax)/
√
N ′ in BF mode.

5.3.3 Computational Complexity Analysis

The computational complexities of the LLR-ordered SIC, the SNR-ordered SIC, and the

maximum-likelihood (ML) detection are compared in Table 5.1. The main computation in

SIC is the determination of the null space Vk for all users. The computational complexity in

calculating Vk is O(nrn
2
tK

2). This follows from the fact that the computational complexity of
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Gram-Schmidt orthogonalization of m×n matrix is O(mn2) [65] and that the channel matrix H

is nr×Knt. Since Vk needs to be calculated for all K users and iterated K times for successive

cancellation, the overall complexity of the SNR-based SIC is on the order of O(nrn
2
tK

4). For

the LLR-ordered SIC, ordering needs to be recalculated for each symbol interval because a

posteriori information Zk changes for each symbol interval. So, if the channel changes every

L symbol intervals, then the LLR-ordered SIC is about L times more complex than the SNR-

ordered SIC. For ML detection of min
{Xk}
||Y −

∑K
k=1HkXk||2, the computational complexity in

calculating
∑K

k=1HkXk is of order O(nrntK) and the number of comparisons involved in finding

the minimum is on the order of O(MntK), yielding the overall complexity of O(nrntKM
ntKL).

5.4 Adaptive Transmit Mode Selection

In this section, we consider the case where the receiver determines an appropriate mode of

operation for each user based on the channel matrix H (obtained by using pilot symbols from

each user) and informs it to all users such that they can adapt their mode of operation. The

required amount of feedback information is 1 bit per user when each user is allowed to choose

either SM or BF mode at a time. We assume that this information is sent to each user without

error.

The mode selection criterion is as follows. It is shown in (5.13) that the union bound

on P (X̂k 6= Xk) is determined by a single parameter: dmin(VkHk) for the SM mode and

dmin(σmax)/
√
N ′ for the BF mode. Hence, the receiver computes dmin(VkHk) and dmin(σmax)/

√
N ′

and chooses the SM mode if dmin(VkHk) ≥ dmin(σmax)/
√
N ′ , and, otherwise, chooses the BF

mode for user k.

If the channel changes every L symbol intervals, the mode selection will be updated once

every L symbol intervals. Computational complexity of dmin(VkHk) and dmin(σmax)/
√
N ′ grows

linearly only with K. Hence, it can be ignored compared to the computational complexity of

SIC.
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5.5 Simulation Results

In this section, we present the numerical results obtained by performing Monte Carlo simu-

lation with MATLAB. Figure 5.3 shows the average bit error rate (BER) versus the bit SNR per

receive antenna for several number of users and receive antennas. Each user has two transmit

antennas. The simulation result shows that the power gain that the LLR-ordered SIC provides

over the SNR-ordered SIC is more significant with larger number of users: the power gain is

1.18dB for two users, 2.40dB for four users and 2.92dB for six users.

Figure 5.4 is a plot of the average BER versus bit SNR per receive antenna when the number

of receive antenna is fixed. Each user has two transmit antennas and the receiver has eight

receive antennas. Similar observation can be made as in Fig. 5.3. The power gains are 0.44dB

with two users and 2.50dB with four users.

Figure 5.5 is a plot of the average BER versus bit SNR per receive antenna with several

detection methods. Each user has two transmit antennas and the receiver has eight receive

antennas. The simulation result shows that the SNR loss of LLR-ordered SIC against ML

detection is 4dB, and the SNR gain against the SNR-ordered SIC is 2.5dB at BER = 10−3.

However, the computational complexity of the ML detection grows with K ·MntK whereas

that of LLR-ordered SIC grows with K4 only. Also, shown in the figure is the average BER

with SNR-ordered SIC without knowing the transmit mode of operation of each user (denoted

by Sub SNR-SIC), in which case the cancellation order is determined based on the SNR given

by ‖VkHkXk‖2/E[‖VkW‖2], which follows from (5.4). We find that the knowledge of transmit

mode at the receiver, that requires 1 bit transmission from each transmitter to the receiver,

can significantly improve the performance.

Figure 5.7 is a plot of the average BER versus bit SNR per receive antenna for several

values of L with the SNR-SIC scheme, where L is the number of symbols for which the channel

state remains constant. We find that the SNR gain that the adaptive mode selection provides

over the random mode section grows with L: the SNR gains at BER of 10−3 are 1.70dB and

4.22dB for L = 5 and L = 20, respectively. This is because the random mode selection requires

the user to remain in the selected mode for at least L symbol intervals even though it is not
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optimal. This makes a larger performance loss against the optimal mode selection with larger

L (slower fading channel).

Figure 5.6 is a plot of the average BER versus bit SNR per receive antenna with random

and adaptive mode selection. Each user has two transmit antennas and the receiver has eight

receive antennas. The simulation result shows that the adaptive selection provides a SNR gain

of 1.2dB against the random selection at BER = 10−3 at the cost of sending 1 bit of feedback

information on the optimum mode of operation for each user by the receiver. The SNR gain

from the adaptive mode selection is even more significant in Sub SNR-SIC case where the

receiver does not utilize the transmit mode information in SIC ordering. It is interesting to

note that knowing the transmit mode at the receiver (SNR-SIC (random)) is more helpful in

reducing the BER than knowing the optimum transmit mode at the transmitter (Sub SNR-

SIC (adaptive)). The former requires each transmitter to send 1 bit of information (SM,BF)

to the receiver, while the latter requires the receiver to send 1 bit of information (SM,BF) to

each transmitter. In both cases the amount of information exchanges is identical.

5.6 Conclusion

In this chapter, we proposed a new detection ordering for successive interference cancellation

in a multi-user, multi-mode MIMO system, where each user may simultaneously transmit in

either spatial multiplexing or beamforming mode to a common receiver. The receiver decides

the order of detection based on the LLR, which provides a posteriori information on reliability

of detection. The proposed approach, exploiting this additional information, can provide a SNR

gain of 1 ∼ 3dB over the conventional SNR-ordered successive interference cancellation and the

SNR gain is more significant with increasing number of users. We provided computational

complexity analysis of the considered detection methods. We also presented an adaptive mode

selection scheme which provides 1 ∼ 2dB SNR gain against the random mode selection scheme.

The impact of the knowledge of transmit mode at the receiver and that of the knowledge of

the optimum transmit mode at the transmitter has been analyzed in different SIC schemes.
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Table 5.1 Comparison of Computational complexities

Computational complexity

LLR-ordered SIC O
(
nrn

2
tK

4L
)

SNR-ordered SIC O
(
nrn

2
tK

4
)

ML detection O
(
nrntKLM

nrK
)
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Figure 5.1 Multi-user, multi-mode MIMO System.
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Figure 5.2 Multi-user MIMO System with adaptive transmit mode selection.
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CHAPTER 6. INTERFERENCE CANCELLATION USING SINGLE

RADIO FREQUENCY CHAIN

In this chapter, we present a new architecture for multi-antenna receivers that cancel the

co-channel interference (CCI) using a single radio frequency (RF) and baseband (BB) chain,

while still achieving nearly the same bit error rate that can be provided by the conventional

receiver requiring multiple RF/BB chains. The proposed receiver architecture enables multiple

transmitter-receiver pairs to simultaneously communicate in the same frequency band without

additional bandwidth, thereby increasing the spectral efficiency or capacity, with significantly

reduced receiver complexity and power consumption.

6.1 Introduction

The use of antenna arrays has long been recognized as an effective technique for mitigating

co-channel interference (CCI) [66]. The value of CCI mitigation in wireless networks is that it

enables to provide a better frequency reuse and hence improves spectrum efficiency. That is,

different signals can be simultaneously transmitted in the same frequency band.

If there are K users, each equipped with one antenna, transmitting simultaneously in the

same frequency band, the receiver needs at least K antennas to completely cancel K − 1

interferers and detect the desired signal [66]. This implies that for each CCI source, we need

one antenna at the receiver to cancel it. The use of multiple antennas at the receiver requires

a radio frequency (RF) chain (low noise amplifier, mixer, and A/D converter) and baseband

(BB) chain (matched filter and analog-to-digital converter) for each antenna element, limiting

its application to the case of small K and NT due to a considerable power consumption and

chip size for each additional RF/BB chain.
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Antenna selection techniques can reduce the need for multiple RF/BB chains. In [67], a

soft antenna selection approach that uses a joint RF/BB design is introduced to reduce the

number of RF chains. [68] spreads each antenna signals using orthogonal codes and combines

them in the analog domain. The combined RF signal is fed to a shared RF/BB chain and

digital matched filters are used to recover each signal. However, the use of orthogonal codes

expands the bandwidth, which incurs additional power dissipation that grows almost linearly

to the bandwidth. [68] also explored the use of non-orthogonal codes to reduce the bandwidth

at the cost of performance loss. [69] halves the number of A/D converters in a dual-antenna

receiver using complex filtering, but the application is limited to two antennas and is inherently

incapable of sharing RF/BB chains.

In this chapter we present a new architecture for multi-antenna receivers that cancel the

CCI using a single RF/BB chain, while still achieving nearly the same bit error rate that can be

provided by the conventional receiver architecture that requires multiple RF/BB chains. The

basic idea is to perform the CCI cancellation in the RF domain and then down convert the

processed information to the baseband to detect the desired user’s data. The proposed receiver

architecture enables multiple transmitter-receiver pairs to simultaneously communicate in the

same frequency band without additional bandwidth, thereby increasing the spectral efficiency or

capacity, with significantly reduced receiver complexity and power consumption. The proposed

approach does not involve an antenna selection which loses information that comes through

non-selected antennas, thereby suffers from a certain performance loss. Instead, it utilizes all

available information that comes through all antennas and processes them at the RF level to

reduce the number of RF/BB chains to one.

In Section II, we describe the system model. In Sections III and IV, we describe the con-

ventional receiver architecture and the proposed receiver architecture, respectively. In Section

V we present simulation results. In Section VI, concluding remarks are provided.

6.2 System Model

We consider a network of K transmitter-receiver pairs communicating simultaneously in

the same frequency band, where each transmitter (Tx) is equipped with one antenna element
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and each receiver (Rx) with NR antenna elements (see Figure 6.1). Extension to NT anten-

nas per transmitter is straightforward. Example scenarios include wireless ad-hoc networks

or peer-to-peer communications in the same frequency band. The channel is assumed to be

frequency nonselective and slowly fading, and the fading processes, h1 and h2, are assumed

to be statistically independent. The signal is corrupted by zero-mean white Gaussian noise.

The noise processes are assumed to be statistically independent, with identical autocorrelation

functions. Thus, the received RF signal vector, ỹ(t) = [ỹ1(t), · · · , ỹNR
(t)]T , is given by

ỹ(t) = Re

{(
K∑
k=1

hkxk(t) + n(t)

)
ej2πfct

}
(6.1)

where hk = [hk,1 · · · , hk,NR
]T denotes the complex channel gain for the k-th transmitter, xk(t)

denotes the low-pass equivalent signal of the k-th transmitter, n(t) = [n1(t), · · · , nNR
(t)]T

denotes the low-pass equivalent complex white Gaussian noise at the receiver, and fc denotes

the carrier frequency. We assume that hk,l and hk,m are independent for l 6= m and E[|hk,l|2] = 1

for all k, l. We assume that the noise ni(t), i = 1, 2, · · · , NR has mean zero and variance N0.

6.3 Conventional Receiver Architecture

The conventional receiver architecture for detecting the signal of the j-th transmitter is

shown in Figure 6.2. The received RF signals are down converted into baseband and then CCI

is cancelled in the baseband (BB). If K transmitters, each equipped with one antenna, transmit

simultaneously in the same frequency band, then the number of RF/BB chains at the receiver

needs to be at least K to completely cancel K − 1 interferers. For large K, the complexity of

the conventional receiver architecture can be prohibitive.

For simplicity of analysis, let us assume that K = 2, NT = 1, and NR = 2. The analysis

can be easily extended to arbitrary values of K, NT , and NR. The received RF signals can be

expressed in the form

ỹ1(t) = Re{ȳ1(t)ej2πfct} (6.2)

ỹ2(t) = Re{ȳ2(t)ej2πfct} (6.3)
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where

ȳ1(t) = h11x1(t) + h21x2(t) + n1(t) (6.4)

ȳ2(t) = h12x1(t) + h22x2(t) + n2(t) (6.5)

are the BB signal. The corresponding matched filter outputs are

ȳ1 = h11s1 + h21s2 + n̄1 (6.6)

ȳ2 = h12s1 + h22s2 + n̄2 (6.7)

where s1 and s2 are the transmitted data of Tx 1 and Tx 2, respectively, and n̄j is the BB

chain output of nj(t), j = 1, 2.

6.3.1 Zero-Forcing Detector

Let

H =

 h11 h21

h12 h22

 (6.8)

be the channel matrix. Then the zero-forcing (ZF) matrix

WZF = (HHH)−1HH

=

 w11 w21

w12 w22

 (6.9)

makes WH = I [70]. Applying WZF to the BB chain outputs

ȳ = [ȳ1ȳ2]T

= H[s1s2]T + [n̄1n̄2]T (6.10)

yields  z1

z2

 =

 s1

s2

+WZF

 n̄1

n̄2

 (6.11)

which follows from the property WZFH = I. The ZF detector completely eliminates CCI at

the expense of noise enhancement.
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6.3.2 MMSE Detector

The minimum mean square error (MMSE) detector [70], balancing CCI mitigation with

noise enhancement, calculates MMSE matrix

WMMSE = (HHH + IK/γ)−1HH

=

 w′11 w′21

w′12 w′22

 (6.12)

where γ = E[|x1(t)|2]/E[|ni(t)|2] is the signal-to-noise ratio per transmit antenna, and applies

WMMSE to ȳ to yield  z1

z2

 = WMMSE ȳ

= WMMSEH

 s1

s2

+WMMSE

 n̄1

n̄2


(6.13)

6.4 Proposed Receiver Architecture

The block diagram of the proposed receiver architecture is shown in Figure 6.3, where the

RF weighting block for the k-th receive antenna for detecting the signal of the j-th user is

shown in Figure 6.4. Each weighting block needs two real multiplications and one fixed delay

unit. The proposed architecture requires only one RF/BB chain, thereby significantly reducing

the hardware complexity, power consumption, and size. In what follows we show that the BB

chain output zj in Fig. 6.3 is nearly identical to that of the conventional receiver shown in Fig.

6.2, hence providing nearly an identical performance.

Without loss of generality, consider the ZF receiver that detects the data of Tx1. The RF

weighting block 11 (first block) in Fig. 6.3, which is shown in more detail in Fig. 6.4, produces

y11(t) = w11,Rỹ1(t) + w11,I ỹ1(t− τ)

= Re{[w11,Rȳ1(t) + w11,I ȳ1(t− τ)e−j2πfcτ ] · ej2πfct} (6.14)

where w11,R = Re{w11} and w11,I = Im{w11}. If the time delay τ is chosen to be

τ = 3/(4fc) (6.15)
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then we obtain e−j2πfcτ = j and

xi(t− τ) ' xi(t) (6.16)

ni(t− τ) ' ni(t), i = 1, 2 (6.17)

for large enough fc. The accuracy of the approximation in (6.16) for the rectangular pulse

shaping and the raised-cosine pulse shaping and that in (6.17) for a low-pass, wide sense

stationary noise with a flat power spectral density are provided in Appendix F. Substituting

(6.17) in (6.14) yields

y11(t) ' Re{w11ȳ1(t)ej2πfct}. (6.18)

Similarly,

y21(t) ' Re{w21ȳ2(t)ej2πfct}. (6.19)

Adding y11(t) and y21(t) yields

y1(t) = y11(t) + y21(t) (6.20)

' Re{[(w11h11 + w21h12)︸ ︷︷ ︸
=1

x1(t)

+ (w11h21 + w21h22)︸ ︷︷ ︸
=0

x2(t)

+w11n1(t) + w21n2(t)]ej2πfct}

= Re{[x1(t) + w11n1(t) + w21n2(t)]ej2πfct} (6.21)

where the last equality follows from the property WH = I. After passing y1(t) through the

RF/BB chain, we obtain

z1 ' s1 + w11n̄1 + w21n̄2. (6.22)

Similarly, adding y12(t) and y22(t) and passing the sum y12(t) + y22(t) through the RF/BB

chain yields

z2 ' s2 + w12n̄1 + w22n̄2. (6.23)

Comparison of (6.11),(6.22), and (6.23) indicates that the proposed receiver that uses a single

RF/BB chain produces nearly the same output as the conventional receiver (Fig. 6.2) that

requires multiple RF/BB chains.
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The accuracy of the approximations in (6.22) and (6.23) is discussed in Appendix G. It

is also shown in Appendix G that the ratio between the signal-to-interference-plus-noise ratio

(SINR) of the conventional receiver and that of the proposed receiver for the rectangular pulse

shaping is given by

SINRc

SINRp
= 1 +

4

3

|τ |γ
T

+
1

6
(πτW )2 (6.24)

where γ = E[|x1(t)|2]/E[|ni(t)|2] is the signal-to-noise ratio per receive antenna and T is the

symbol duration. In (6.24), the second term on the right hand side is due to the inaccuracy of

(6.16) and the third term is due to the inaccuracy of (6.17). For practical values of fc and T ,

the ratio is very close to 1. For example, when fc is 1GHz and the symbol duration T is 10−6

second, corresponding to the symbol rate of 1M symbols per second, 1
3(πτW )2 = 1.85x10−6

and |τ |/T = 7.5x10−4, which are both negligibly small compared to 1. It is shown in Appendix

A that the accuracy of the approximation in (6.16) is even higher for the raised-cosine pulse

shaping. The enhanced accuracy of the approximation makes the ratio in (6.24) even closer to

one.

6.5 Channel Estimation Issue

Both receiver architectures require knowledge of the channel gains, {hij}. For the proposed

receiver architecture, they can be obtained by multiplexing the antenna elements to the RF

chain during the training period. That is, the RF chain is connected to the first antenna element

during the first part of the training sequence, then to the second antenna element during the

next part, and so on. Thus, we need a few more training symbols and extra training time,

not more RF chains. Especially in high data rate applications, those additional training bits

decrease the spectral efficiency in a negligible way.

Following the channel estimation model for MIMO systems in [71; 72], the noisy channel

estimate with the maximum likelihood (ML) channel estimation can be modeled as [73]

Ĥ = H + eΩ, (6.25)

where Ĥ is the estimated channel matrix, H is the true channel matrix, and eΩ is the estimation

error that is uncorrelated with H. The entries of Ω are i.i.d zero-mean complex Gaussian with
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unit variance [71; 72] and e is the measure of channel estimation accuracy. As e gets smaller,

the estimation is more accurate and vice versa. The correlation coefficient between Ĥ and H

is given by [73].

ρij =
e[hij ĥ

∗
ij ]√

e[|hij |2] · e[|ĥij |2]

=
1√

1 + e2

(6.26)

where hij and ĥij represent the (i, j) component of H and Ĥ, respectively. The normalized

mean square error (NMSE) of the channel estimation is given by [73]

NMSE =
E[|hij − ĥij |2]

E[|hij |2]

= e2.

(6.27)

6.6 Simulation Results

In this section we present simulation results for the case of rectangular pulse shaping. Fig.

6.5 compares the bit error rate (BER) of the conventional receiver with that of the proposed

receiver for the case of K = 2, NR = 2, NT = 1, and BPSK modulation. We find that both

receivers provide nearly identical BER for T ≥ 10−6, i.e. for bit rate less than 1Mbps and that

for T = 10−5 both receivers provide exactly identical BER. For the raised-cosine pulse shaping,

the analysis in Appendix A shows that the BER of the proposed receiver is even closer to that

of the conventional receiver.

Fig. 6.6 shows that the difference in BER between the proposed receiver and the conven-

tional receiver is even smaller when the number of transmitter-receiver pairs, hence the number

of receive antennas, is larger (K = 4, NR = 4, NT = 1). We find that both receivers provide

nearly identical BER for T ≥ 10−7, i.e. for bit rate less than 10Mbps. Figs. 6.5 and 6.6 show

that the proposed receiver architecture provides nearly the same BER that can be provided by

the conventional receiver that requires multiple RF/BB chains.

Fig. 6.7 shows the BER when the number of RF chains is smaller than that of users K and

the MMSE nulling matrix in (6.12) is applied. For the conventional receiver with NR = 4, the

SNR-based antenna selection technique [74; 75] is applied in choosing 2 antenna elements out
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of 4 antenna elements and passing the RF signals to 2 RF chains. Also, shown in the figure

is the BER for the conventional receiver with NR = 2. We can see a significant performance

degradation for the conventional receiver architecture when the number of RF chains is smaller

than that of users, even though it requires one more RF chain than the proposed receiver

architecture.

Fig. 6.8 shows the effect of the channel estimation error on the average BER for different

value of normalized root mean square error e. For both conventional and proposed receiver

architecture, the BER performance is sensitive to the channel estimation error and degrades

significantly as e increases.

6.7 Conclusion

We proposed a new receiver architecture that enables to detect the desired signal in the

presence of co-channel interference with a single RF/BB chain, while still providing nearly the

same bit error rate that can be provided by the conventional receiver that requires multiple

RF/BB chains. Reduction of the number of RF/BB chains leads to a reduction of hardware

complexity and power consumption at the receiver. The proposed receiver architecture en-

ables multiple transmitter-receiver pairs to simultaneously communicate in the same frequency

band without additional bandwidth, thereby increasing the spectral efficiency or capacity, with

significantly reduced receiver complexity and power consumption.



www.manaraa.com

86

Rx1

Rx2

1
h

2
h

R
N

1

1

R
N

Tx1

Tx2

Rx1

Rx2

1
h

2
h

R
N

1

1

R
N
R
N

Tx1

Tx2

Figure 6.1 System model for K = 2.



www.manaraa.com

87

RF

Chain

RF

Chain

RF

Chain

BB

Chain

C
C

I

C
a
n
c
e
lla

tio
n
, W

)(~1 ty

)(~2 ty

)(~ ty
RN

jz

1y

2y

RN
y

BB

Chain

BB

Chain

RF

Chain

RF

Chain

RF

Chain

RF

Chain

RF

Chain

BB

Chain

C
C

I

C
a
n
c
e
lla

tio
n
, W

)(~1 ty

)(~2 ty

)(~ ty
RN

jz

1y

2y

RN
y

BB

Chain

BB

Chain

Figure 6.2 Conventional receiver architecture.



www.manaraa.com

88

RF 

Weighting 1j

)(~1 ty

)(~2 ty

)(~ ty
RN

)(1 ty j

)(ty jNR

CCI Cancellation

RF 

Weighting 2j

RF

Weighting jNR

RF
Chain

jzBB
Chain

)(ty j

RF 

Weighting 1j

)(~1 ty

)(~2 ty

)(~ ty
RN

)(1 ty j

)(ty jNR

CCI Cancellation

RF 

Weighting 2j

RF

Weighting jNR

RF
Chain

jzBB
Chain

RF
Chain

jzBB
Chain

)(ty j

Figure 6.3 Proposed receiver architecture for detecting the signal of the j-th user.



www.manaraa.com

89

Delay

)(~ tyk

Rkjw ,

Ikjw ,

)(tykj)4/(3 cf

Delay

)(~ tyk

Rkjw ,

Ikjw ,

)(tykj

Delay

)(~ tyk

Rkjw ,

Ikjw ,

)(tykj)4/(3 cf

Figure 6.4 RF weighting block kj for the k-th receive antenna for detecting the j-th trans-

mitter signal.



www.manaraa.com

90

0 5 10 15 20 25 30 35
10

−4

10
−3

10
−2

10
−1

10
0

Transmit E
s
 / N

0
 [dB]

A
v
e
ra

g
e
 B

E
R

	

 

 
 conventional

 proposed, T=10
−5

 proposed, T=10
−6

 proposed, T=10
−7

Figure 6.5 Bit error rate of the conventional receiver and the proposed receiver for different

values of T , rectangular pulse shaping, fc=1GHz, K = NR = 2, NT = 1.



www.manaraa.com

91

0 5 10 15 20 25 30 35
10

−4

10
−3

10
−2

10
−1

10
0

Transmit E
s
 / N

0
 [dB]

A
v
e
ra

g
e
 B

E
R

 

 
 conventional

 proposed, T=10
−5

 proposed, T=10
−6

 proposed, T=10
−7

Figure 6.6 Bit error rate of the conventional receiver and the proposed receiver for different

values of T , rectangular pulse shaping, fc=1GHz, K = NR = 4, NT = 1.
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Figure 6.8 Bit error rate of the conventional receiver and the proposed receiver for different

values of e, rectangular pulse shaping, fc=1GHz, K = NR = 4, NT = 1, T = 10−7.
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CHAPTER 7. CONCLUSION

In chapter 3, we considered a multiple access relay network where each source transmits

a channel coded packet, the relay decodes the transmitted packet, generates network coded

packet, and re-transmits it. We assumed multiple antennas at the relay and considered two

MIMO transmission modes at the relay; spatial multiplexing (SM) and beamforming as trans-

mit diversity (TD). We applied different network coding schemes depending on the MIMO

transmission modes. We derived the outage probability with the maximum likelihood decoding

at the destination, and investigated the effect of MIMO transmission modes at the relay, cod-

ing rate from each source, relay locations, and different network coding schemes on the outage

probability. We proposed an optimal MIMO mode selection sheme which depends on channel

coding from the source, network coding at the relay, and MIMO transmission modes.

This thesis also investigates the fundamental tradeoff between achievable rate and relia-

bility of multiple access relay network with multiple antennas. We considered three MIMO

transmission modes, spatial multiplexing (SM), Alamouti coding as transmit diversity (TD),

and Golden Coding, and random linear network coding at the relay. We derived the union

bound on the average decoding error probability with maximum likelihood decoding at the

destination. We found that TD mode provides the highest error probability, and SM and GC

modes provide virtually identical probability of decoding error.

Chapter 5 proposed a new detection ordering for successive interference cancellation in a

multi-user, multi-mode MIMO system, where each user may simultaneously transmit in either

spatial multiplexing or beamforming mode to a common receiver. The receiver decides the

order of detection based on the LLR, which provides a posteriori information on reliability of

detection. The proposed approach, exploiting this additional information, can provide a SNR

gain of 1 ∼ 3dB over the conventional SNR-ordered successive interference cancellation and
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the SNR gain is more significant with increasing number of users. We provided computational

complexity analysis of the considered detection methods. We also presented an adaptive mode

selection scheme which provides 1 ∼ 2dB SNR gain against the random mode selection scheme.

The impact of the knowledge of transmit mode at the receiver and that of the knowledge of

the optimum transmit mode at the transmitter has been analyzed in different SIC schemes.

Chapter 6 proposed a new receiver architecture that enables to detect the desired signal in

the presence of co-channel interference with a single RF/BB chain, while still providing nearly

the same bit error rate that can be provided by the conventional receiver that requires multiple

RF/BB chains. Reduction of the number of RF/BB chains leads to a reduction of hardware

complexity and power consumption at the receiver. The proposed receiver architecture en-

ables multiple transmitter-receiver pairs to simultaneously communicate in the same frequency

band without additional bandwidth, thereby increasing the spectral efficiency or capacity, with

significantly reduced receiver complexity and power consumption.
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APPENDIX A. LINK OUTAGE PROBABILITY OF SM MODE

In this appendix, we prove (3.10) the outage probability between R → D link when SM

mode is used. In SM mode, independent symbols are transmitted through different antennas

and the received signal at the destination is given by (3.6). Since each antenna transmit equal

amount of information bit for a given time, the data rate Ri between i-th antenna and the

destination is identical for all antennas (R1 = R2 = R).

First, we find the capacity region for each outage events. We define three error events E1j ,

Ei1, Eij where

E1,2̄ = {p1 is correctly decoded, p2 is in outage}

E1̄,2 = {p1 is in outage, p2 is correctly decoded}

E1̄,2̄ = {p1 and p2 are both in outage} .

(A.1)

Then the event p1 that p1 is in outage is given by

p1 = E1̄,2 ∪ E1̄,2̄ (A.2)

and the event p1 · p2 that both p1 and p2 are in outage is given by

p1 · p2 = E1̄,2̄ (A.3)

Using the steps in [95], the error events E1j , Ei1, Eij can be upper bounded as follow

P (E1̄,2) ≤ 2nR12−n( I(p1:yr|p2)−3ε )

P (E1,2̄) ≤ 2nR22−n( I(p2:yr|p1)−3ε )

P (E1̄,2̄) ≤ 2n(R1+R2)2−n( I(p1,p2:yr)−4ε )

(A.4)

Hence, p1 occurs if and only if R1 > I(p1 : yr|p2) or (R1 +R2) > I(p1, p2 : yr) and p1 · p2 occurs

iff (R1 +R2) > I(p1, p2 : yr).
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Second, the outage probability for p1 and p1 · p2 can be derived as follows

P (p1) = P (R > I(p1 : ydr|p2) or 2R > I(p1, p2 : ydr))

= P (log2 (1 + γr1) < Ror log2 (1 + γr1 + γr2) < 2R)

= P
(
γr1 < 2R − 1 or (γr1 + γr2) < 22R − 1

) (A.5)

where γri = |gi|2Er/N0 and R1 = R2 = R is applied into the first equality. For Rayleigh fading,

γri becomes exponential random variable with the following probability distribution

f(γri) =
1

γr
exp

(
−γri
γr

)
, γr,i ≥ 0 (A.6)

where γr = E[|gi|2Er/N0] = d−αrd Er/N0. Hence,

P (p1) =

∫ 2R−1

0

∫ ∞
2R−1−γr1

f(γr2)f(γr1)dγr2dγr1

+

∫ 22R−1

0

∫ 22R−1−γr1

0
f(γr2)f(γr1)dγr2dγr1

= 1−
(

1 +
22R − 2R

γr

)
exp

(
−22R − 1

γr

) (A.7)

Similarly,

P (p1 · p2) = P

(
log2

(
1 +
|g1|2Er
N0

+
|g2|2Er
N0

)
< 2R

)

= P
(
(γr1 + γr2) < 22R − 1

)
=

∫ 22R−1

0

∫ 22R−1−γr1

0
f(γr2)f(γr1)dγr2dγr1

= 1−
(

1 +
22R − 1

γr

)
exp

(
−22R − 1

γr

)
(A.8)

This completes the proof.
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APPENDIX B. GENERALIZATION TO K SOURCES

In this appendix, we prove the first equality in (3.19) using mathematical induction. For

K = 2, the last term in (3.19) is

P (x2 ∪ p0) = P (x2) + P (p0)− P (x2)P (p0)

= psd + pTD − psdpTD

= 1− (1− pTD)(1− psd)

(B.1)

where we denote p0 , {I(p0 : ydr) < Rc}. Assume that the following statement holds for

K = n.

P (xn2 ∪ p0) = 1− (1− pTD)(1− psd)n−1 (B.2)

Then for K = n+ 1,

P
(
xn+1

2 ∪ p0

)
= P (xn2 ∪ xn+1 ∪ p0)

= P (xn2 ∪ p0) + P (xn+1) (1− P (xn2 ∪ p0))

= 1− (1− pTD)(1− psd)n−1 + psd(1− pTD)(1− psd)n−1

= 1− (1− pTD)(1− psd)n

(B.3)

Thereby the statement (B.2) holds.
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APPENDIX C. ERROR PROBABILITY FOR ERROR PATTERN ei

In this appendix, we present the codebook and derive the union bound of the decoding

error probability for each error pattern ei, i = 1, · · · , 16.

Table C.1 Codebook for Error Pattern e1 = (e1, e2, e3, e4) = (0, 0, 0, 0)

SM TD

x1, x2 x3, x4 p1 = x1 ⊕ x2 p2 = x3 ⊕ x4 p0 = x1 ⊕ x2 ⊕ x3 ⊕ x4

0 0 0 0 0 0 0

0 0 0 1 0 1 1

0 0 1 0 0 1 1

0 1 0 0 1 0 1

1 0 0 0 1 0 1

0 0 1 1 0 0 0

0 1 0 1 1 1 0

1 0 0 1 1 1 0

0 1 1 0 1 1 0

1 0 1 0 1 1 0

1 1 0 0 0 0 0

1 1 1 0 0 1 1

1 1 0 1 0 1 1

1 0 1 1 1 0 1

0 1 1 1 1 0 1

1 1 1 1 0 0 0

The decoding error probability for error pattern e1 = (0, 0, 0, 0) is upper bounded by

PE(e1)SM ≤ 4

(
1

1 + γs

)(
1

1 + γr

)
+ 2

(
1

1 + γs

)2

+ 4

(
1

1 + γs

)2( 1

1 + 2γr

)
+ 4

(
1

1 + γs

)3( 1

1 + γr

)
+

(
1

1 + γs

)4

∼ 4

γsγr
+

2

γ2
s

as γs, γr →∞

PE(e1)TD ≤ 4

(
1

1 + γs

)(
1

1 + γr

)2

+ 6

(
1

1 + γs

)2

+ 4

(
1

1 + γs

)3( 1

1 + γr

)2

+

(
1

1 + γs

)4

∼ 4

γsγr

2

+
6

γ2
s

(C.1)
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Table C.2 Codebook for Error Pattern e2 = (e1, e2, e3, e4) = (0, 0, 0, 1)

SM TD

x1, x2 x3, x4 p1 = x1 ⊕ x2 p2 = x3 p0 = x1 ⊕ x2 ⊕ x3

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 1 1

0 1 0 0 1 0 1

1 0 0 0 1 0 1

0 0 1 1 0 1 1

0 1 0 1 1 0 1

1 0 0 1 1 0 1

0 1 1 0 1 1 0

1 0 1 0 1 1 0

1 1 0 0 0 0 0

1 1 1 0 0 1 1

1 1 0 1 0 0 0

1 0 1 1 1 1 0

0 1 1 1 1 1 0

1 1 1 1 0 1 1

The decoding error probability for error pattern e2 = (0, 0, 0, 1) is upper bounded by

PE(e2)SM ≤
(

1

1 + γs

)
+ 3

(
1

1 + γs

)(
1

1 + γr

)
+ 3

(
1

1 + γs

)2( 1

1 + γr

)
+ 2

(
1

1 + γs

)2( 1

1 + 2γr

)
+

(
1

1 + γs

)2

+

(
1

1 + γs

)3( 1

1 + γr

)
+

(
1

1 + γs

)3

+ 2

(
1

1 + γs

)3( 1

1 + 2γr

)
+

(
1

1 + γs

)4( 1

1 + γr

)
∼ 1

γs
as γs, γr →∞

PE(e2)TD ≤
(

1

1 + γs

)
+ 3

(
1

1 + γs

)(
1

1 + γr

)2

+ 3

(
1

1 + γs

)2( 1

1 + γr

)2

+ 3

(
1

1 + γs

)2

+

(
1

1 + γs

)3( 1

1 + γr

)2

+ 3

(
1

1 + γs

)3

+

(
1

1 + γs

)4( 1

1 + γr

)2

∼ 1

γs

(C.2)

where the error event e2 occurs with the following probability

P (e2) = P (e1 = 0)P (e2 = 0)P (e3 = 0)P (e4 = 1) = pe,r4

3∏
i=1

(1− pe,ri) (C.3)
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Table C.3 Codebook for Error Pattern e3 = (e1, e2, e3, e4) = (0, 0, 1, 0)

SM TD

x1, x2 x3, x4 p1 = x1 ⊕ x2 p2 = x4 p0 = x1 ⊕ x2 ⊕ x4

0 0 0 0 0 0 0

0 0 0 1 0 1 1

0 0 1 0 0 0 0

0 1 0 0 1 0 1

1 0 0 0 1 0 1

0 0 1 1 0 1 1

0 1 0 1 1 1 0

1 0 0 1 1 1 0

0 1 1 0 1 0 1

1 0 1 0 1 0 1

1 1 0 0 0 0 0

1 1 1 0 0 0 0

1 1 0 1 0 1 1

1 0 1 1 1 1 0

0 1 1 1 1 1 0

1 1 1 1 0 1 1

The decoding error probability for error pattern e3 = (0, 0, 1, 0) is upper bounded by

PE(e3)SM ≤
(

1

1 + γs

)
+ 3

(
1

1 + γs

)(
1

1 + γr

)
+ 3

(
1

1 + γs

)2( 1

1 + γr

)
+ 2

(
1

1 + γs

)2( 1

1 + 2γr

)
+

(
1

1 + γs

)2

+

(
1

1 + γs

)3( 1

1 + γr

)
+

(
1

1 + γs

)3

+ 2

(
1

1 + γs

)3( 1

1 + 2γr

)
+

(
1

1 + γs

)4( 1

1 + γr

)
∼ 1

γs
as γs, γr →∞

PE(e3)TD ≤
(

1

1 + γs

)
+ 3

(
1

1 + γs

)(
1

1 + γr

)2

+ 3

(
1

1 + γs

)2( 1

1 + γr

)2

+ 3

(
1

1 + γs

)2

+

(
1

1 + γs

)3( 1

1 + γr

)2

+ 3

(
1

1 + γs

)3

+

(
1

1 + γs

)4( 1

1 + γr

)2

∼ 1

γs

(C.4)

where the error event e3 occurs with probability

P (e3) = P (e1 = 0)P (e2 = 0)P (e3 = 1)P (e4 = 0)

= (1− pe,r1)(1− pe,r2)pe,r3(1− pe,r4)

(C.5)
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Table C.4 Codebook for Error Pattern e4 = (e1, e2, e3, e4) = (0, 1, 0, 0)

SM TD

x1, x2 x3, x4 p1 = x1 p2 = x3 ⊕ x4 p0 = x1 ⊕ x3 ⊕ x4

0 0 0 0 0 0 0

0 0 0 1 0 1 1

0 0 1 0 0 1 1

0 1 0 0 0 0 0

1 0 0 0 1 0 1

0 0 1 1 0 0 0

0 1 0 1 0 1 1

1 0 0 1 1 1 0

0 1 1 0 0 1 1

1 0 1 0 1 1 0

1 1 0 0 1 0 1

1 1 1 0 1 1 0

1 1 0 1 1 1 0

1 0 1 1 1 0 1

0 1 1 1 0 0 0

1 1 1 1 1 0 1

The decoding error probability for error pattern e4 = (0, 1, 0, 0) is upper bounded by

PE(e4)SM ≤
(

1

1 + γs

)
+ 3

(
1

1 + γs

)(
1

1 + γr

)
+ 3

(
1

1 + γs

)2( 1

1 + γr

)
+ 2

(
1

1 + γs

)2( 1

1 + 2γr

)
+

(
1

1 + γs

)2

+

(
1

1 + γs

)3( 1

1 + γr

)
+

(
1

1 + γs

)3

+ 2

(
1

1 + γs

)3( 1

1 + 2γr

)
+

(
1

1 + γs

)4( 1

1 + γr

)
∼ 1

γs
as γs, γr →∞

PE(e4)TD ≤
(

1

1 + γs

)
+ 3

(
1

1 + γs

)(
1

1 + γr

)2

+ 3

(
1

1 + γs

)2( 1

1 + γr

)2

+ 3

(
1

1 + γs

)2

+

(
1

1 + γs

)3( 1

1 + γr

)2

+ 3

(
1

1 + γs

)3

+

(
1

1 + γs

)4( 1

1 + γr

)2

∼ 1

γs

(C.6)

where the error event e4 occurs with the following probability

P (e4) = P (e1 = 0)P (e2 = 1)P (e3 = 0)P (e4 = 0)

= (1− pe,r1)pe,r2(1− pe,r3)(1− pe,r4)

(C.7)
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Table C.5 Codebook for Error Pattern e5 = (e1, e2, e3, e4) = (1, 0, 0, 0)

SM TD

x1, x2 x3, x4 p1 = x2 p2 = x3 ⊕ x4 p0 = x2 ⊕ x3 ⊕ x4

0 0 0 0 0 0 0

0 0 0 1 0 1 1

0 0 1 0 0 1 1

0 1 0 0 1 0 1

1 0 0 0 0 0 0

0 0 1 1 0 0 0

0 1 0 1 1 1 0

1 0 0 1 0 1 1

0 1 1 0 1 1 0

1 0 1 0 0 1 1

1 1 0 0 1 0 1

1 1 1 0 1 1 0

1 1 0 1 1 1 0

1 0 1 1 0 0 0

0 1 1 1 1 0 1

1 1 1 1 1 0 1

The decoding error probability for error pattern e5 = (1, 0, 0, 0) is upper bounded by

PE(e5)SM ≤
(

1

1 + γs

)
+ 3

(
1

1 + γs

)(
1

1 + γr

)
+ 3

(
1

1 + γs

)2( 1

1 + γr

)
+ 2

(
1

1 + γs

)2( 1

1 + 2γr

)
+

(
1

1 + γs

)2

+

(
1

1 + γs

)3( 1

1 + γr

)
+

(
1

1 + γs

)3

+ 2

(
1

1 + γs

)3( 1

1 + 2γr

)
+

(
1

1 + γs

)4( 1

1 + γr

)
∼ 1

γs
as γs, γr →∞

PE(e5)TD ≤
(

1

1 + γs

)
+ 3

(
1

1 + γs

)(
1

1 + γr

)2

+ 3

(
1

1 + γs

)2( 1

1 + γr

)2

+ 3

(
1

1 + γs

)2

+

(
1

1 + γs

)3( 1

1 + γr

)2

+ 3

(
1

1 + γs

)3

+

(
1

1 + γs

)4( 1

1 + γr

)2

∼ 1

γs

(C.8)

where the error event e5 occurs with the following probability

P (e5) = P (e1 = 1)P (e2 = 0)P (e3 = 0)P (e4 = 0)

= pe,r1

4∏
i=2

(1− pe,ri)
(C.9)
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Table C.6 Codebook for Error Pattern e6 = (e1, e2, e3, e4) = (0, 0, 1, 1)

SM TD

x1, x2 x3, x4 p1 = x1 ⊕ x2 p2 = x1 ⊕ x2 p0 = x1 ⊕ x2

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 1 1 1

1 0 0 0 1 1 1

0 0 1 1 0 0 0

0 1 0 1 1 1 1

1 0 0 1 1 1 1

0 1 1 0 1 1 1

1 0 1 0 1 1 1

1 1 0 0 0 0 0

1 1 1 0 0 0 0

1 1 0 1 0 0 0

1 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 0 0 0

The decoding error probability for error pattern e6 = (0, 0, 1, 1) is upper bounded by

PE(e6)SM ≤ 2

(
1

1 + γs

)
+ 2

(
1

1 + γs

)(
1

1 + 2γr

)
+ 2

(
1

1 + γs

)2

+ 4

(
1

1 + γs

)2( 1

1 + 2γr

)
+ 2

(
1

1 + γs

)3

+ 2

(
1

1 + γs

)3( 1

1 + 2γr

)
+

(
1

1 + γs

)4

∼ 2

γs
as γs, γr →∞

PE(e6)TD ≤ 2

(
1

1 + γs

)
+ 2

(
1

1 + γs

)(
1

1 + γr

)2

+ 2

(
1

1 + γs

)2

+ 4

(
1

1 + γs

)2( 1

1 + γr

)2

+ 2

(
1

1 + γs

)3

+ 2

(
1

1 + γs

)3( 1

1 + γr

)2

+

(
1

1 + γs

)4

∼ 2

γs

(C.10)

where the error event e6 occurs with the following probability

P (e6) = P (e1 = 0)P (e2 = 0)P (e3 = 1)P (e4 = 1)

=
2∏
i=1

(1− pe,ri)
4∏
j=3

pe,rj

(C.11)



www.manaraa.com

105

Table C.7 Codebook for Error Pattern e7 = (e1, e2, e3, e4) = (0, 1, 0, 1)

SM TD

x1, x2 x3, x4 p1 = x1 p2 = x3 p0 = x1 ⊕ x3

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 1 1

0 1 0 0 0 0 0

1 0 0 0 1 0 1

0 0 1 1 0 1 1

0 1 0 1 0 0 0

1 0 0 1 1 0 1

0 1 1 0 0 1 1

1 0 1 0 1 1 0

1 1 0 0 1 0 1

1 1 1 0 1 1 0

1 1 0 1 1 0 1

1 0 1 1 1 1 0

0 1 1 1 0 1 1

1 1 1 1 1 1 0

The decoding error probability for error pattern e7 = (0, 1, 0, 1) is upper bounded by

PE(e7)SM ≤ 2

(
1

1 + γs

)
+ 2

(
1

1 + γs

)(
1

1 + γr

)
+

(
1

1 + γs

)2

+ 4

(
1

1 + γs

)2( 1

1 + γr

)
+

(
1

1 + γs

)2( 1

1 + 2γr

)
+ 2

(
1

1 + γs

)3( 1

1 + γr

)
+ 2

(
1

1 + γs

)3( 1

1 + 2γr

)
+

(
1

1 + γs

)4( 1

1 + 2γr

)
∼ 2

γs
as γs, γr →∞

PE(e7)TD ≤ 2

(
1

1 + γs

)
+ 2

(
1

1 + γs

)(
1

1 + γr

)2

+ 2

(
1

1 + γs

)2

+ 4

(
1

1 + γs

)2( 1

1 + γr

)2

+ 2

(
1

1 + γs

)3

+ 2

(
1

1 + γs

)3( 1

1 + γr

)2

+

(
1

1 + γs

)4

∼ 2

γs

(C.12)

where the error event e7 occurs with the following probability

P (e7) = P (e1 = 0)P (e2 = 1)P (e3 = 0)P (e4 = 1)

= (1− pe,r1)pe,r2(1− pe,r3)pe,r4

(C.13)
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Table C.8 Codebook for Error Pattern e8 = (e1, e2, e3, e4) = (1, 0, 0, 1)

SM TD

x1, x2 x3, x4 p1 = x2 p2 = x3 p0 = x2 ⊕ x3

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 1 1

0 1 0 0 1 0 1

1 0 0 0 0 0 0

0 0 1 1 0 1 1

0 1 0 1 1 0 1

1 0 0 1 0 0 0

0 1 1 0 1 1 0

1 0 1 0 0 1 1

1 1 0 0 1 0 1

1 1 1 0 1 1 0

1 1 0 1 1 0 1

1 0 1 1 0 1 1

0 1 1 1 1 1 0

1 1 1 1 1 1 0

The decoding error probability for error pattern e8 = (1, 0, 0, 1) is upper bounded by

PE(e8)SM ≤ 2

(
1

1 + γs

)
+ 2

(
1

1 + γs

)(
1

1 + γr

)
+

(
1

1 + γs

)2

+ 4

(
1

1 + γs

)2( 1

1 + γr

)
+

(
1

1 + γs

)2( 1

1 + 2γr

)
+ 2

(
1

1 + γs

)3( 1

1 + γr

)
+ 2

(
1

1 + γs

)3( 1

1 + 2γr

)
+

(
1

1 + γs

)4( 1

1 + 2γr

)
∼ 2

γs
as γs, γr →∞

PE(e8)TD ≤ 2

(
1

1 + γs

)
+ 2

(
1

1 + γs

)(
1

1 + γr

)2

+ 2

(
1

1 + γs

)2

+ 4

(
1

1 + γs

)2( 1

1 + γr

)2

+ 2

(
1

1 + γs

)3

+ 2

(
1

1 + γs

)3( 1

1 + γr

)2

+

(
1

1 + γs

)4

∼ 2

γs

(C.14)

where the error event e8 occurs with the following probability

P (e8) = P (e1 = 1)P (e2 = 0)P (e3 = 0)P (e4 = 1)

= pe,r1(1− pe,r2)(1− pe,r3)pe,r4

(C.15)
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Table C.9 Codebook for Error Pattern e9 = (e1, e2, e3, e4) = (0, 1, 1, 0)

SM TD

x1, x2 x3, x4 p1 = x1 p2 = x4 p0 = x1 ⊕ x4

0 0 0 0 0 0 0

0 0 0 1 0 1 1

0 0 1 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 1 0 1

0 0 1 1 0 1 1

0 1 0 1 0 1 1

1 0 0 1 1 1 0

0 1 1 0 0 0 0

1 0 1 0 1 0 1

1 1 0 0 1 0 1

1 1 1 0 1 0 1

1 1 0 1 1 1 0

1 0 1 1 1 1 0

0 1 1 1 0 1 1

1 1 1 1 1 1 0

The decoding error probability for error pattern e9 = (0, 1, 1, 0) is upper bounded by

PE(e9)SM ≤ 2

(
1

1 + γs

)
+ 2

(
1

1 + γs

)(
1

1 + γr

)
+

(
1

1 + γs

)2

+ 4

(
1

1 + γs

)2( 1

1 + γr

)
+

(
1

1 + γs

)2( 1

1 + 2γr

)
+ 2

(
1

1 + γs

)3( 1

1 + γr

)
+ 2

(
1

1 + γs

)3( 1

1 + 2γr

)
+

(
1

1 + γs

)4( 1

1 + 2γr

)
∼ 2

γs
as γs, γr →∞

PE(e9)TD ≤ 2

(
1

1 + γs

)
+ 2

(
1

1 + γs

)(
1

1 + γr

)2

+ 2

(
1

1 + γs

)2

+ 4

(
1

1 + γs

)2( 1

1 + γr

)2

+ 2

(
1

1 + γs

)3

+ 2

(
1

1 + γs

)3( 1

1 + γr

)2

+

(
1

1 + γs

)4

∼ 2

γs

(C.16)

where the error event e9 occurs with the following probability

P (e9) = P (e1 = 0)P (e2 = 1)P (e3 = 1)P (e4 = 0)

= (1− pe,r1)

3∏
i=2

pe,ri (1− pe,r4)
(C.17)
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Table C.10 Codebook for Error Pattern e10 = (e1, e2, e3, e4) = (1, 0, 1, 0)

SM TD

x1, x2 x3, x4 p1 = x2 p2 = x4 p0 = x2 ⊕ x4

0 0 0 0 0 0 0

0 0 0 1 0 1 1

0 0 1 0 0 0 0

0 1 0 0 1 0 1

1 0 0 0 0 0 0

0 0 1 1 0 1 1

0 1 0 1 1 1 0

1 0 0 1 0 1 1

0 1 1 0 1 0 1

1 0 1 0 0 0 0

1 1 0 0 1 0 1

1 1 1 0 1 0 1

1 1 0 1 1 1 0

1 0 1 1 0 1 1

0 1 1 1 1 1 0

1 1 1 1 1 1 0

The decoding error probability for error pattern e10 = (1, 0, 1, 0) is upper bounded by

PE(e10)SM ≤ 2

(
1

1 + γs

)
+ 2

(
1

1 + γs

)(
1

1 + γr

)
+

(
1

1 + γs

)2

+ 4

(
1

1 + γs

)2( 1

1 + γr

)
+

(
1

1 + γs

)2( 1

1 + 2γr

)
+ 2

(
1

1 + γs

)3( 1

1 + γr

)
+ 2

(
1

1 + γs

)3( 1

1 + 2γr

)
+

(
1

1 + γs

)4( 1

1 + 2γr

)
∼ 2

γs
as γs, γr →∞

PE(e10)TD ≤ 2

(
1

1 + γs

)
+ 2

(
1

1 + γs

)(
1

1 + γr

)2

+ 2

(
1

1 + γs

)2

+ 4

(
1

1 + γs

)2( 1

1 + γr

)2

+ 2

(
1

1 + γs

)3

+ 2

(
1

1 + γs

)3( 1

1 + γr

)2

+

(
1

1 + γs

)4

∼ 2

γs

(C.18)

where the error event e10 occurs with the following probability

P (e10) = P (e1 = 1)P (e2 = 0)P (e3 = 1)P (e4 = 0)

= pe,r1(1− pe,r2)pe,r3(1− pe,r4)

(C.19)
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Table C.11 Codebook for Error Pattern e11 = (e1, e2, e3, e4) = (1, 1, 0, 0)

SM TD

x1, x2 x3, x4 p1 = x3 ⊕ x4 p2 = x3 ⊕ x4 p0 = x3 ⊕ x4

0 0 0 0 0 0 0

0 0 0 1 1 1 1

0 0 1 0 1 1 1

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1 1 0 0 0

0 1 0 1 1 1 1

1 0 0 1 1 1 1

0 1 1 0 1 1 1

1 0 1 0 1 1 1

1 1 0 0 0 0 0

1 1 1 0 1 1 1

1 1 0 1 1 1 1

1 0 1 1 0 0 0

0 1 1 1 0 0 0

1 1 1 1 0 0 0

The decoding error probability for error pattern e11 = (1, 1, 0, 0) is upper bounded by

PE(e11)SM ≤ 2

(
1

1 + γs

)
+ 2

(
1

1 + γs

)(
1

1 + 2γr

)
+ 2

(
1

1 + γs

)2

+ 4

(
1

1 + γs

)2( 1

1 + 2γr

)
+ 2

(
1

1 + γs

)3

+ 2

(
1

1 + γs

)3( 1

1 + 2γr

)
+

(
1

1 + γs

)4

∼ 2

γs
as γs, γr →∞

PE(e12)TD ≤ 2

(
1

1 + γs

)
+ 2

(
1

1 + γs

)(
1

1 + γr

)2

+ 2

(
1

1 + γs

)2

+ 4

(
1

1 + γs

)2( 1

1 + γr

)2

+ 2

(
1

1 + γs

)3

+ 2

(
1

1 + γs

)3( 1

1 + γr

)2

+

(
1

1 + γs

)4

∼ 2

γs

(C.20)

where the error event e11 occurs with the following probability

P (e11) = P (e1 = 1)P (e2 = 1)P (e3 = 0)P (e4 = 0)

= pe,r1pe,r2(1− pe,r3)(1− pe,r4)

(C.21)
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Table C.12 Codebook for Error Pattern e12 = (e1, e2, e3, e4) = (1, 1, 1, 0)

SM TD

x1, x2 x3, x4 p1 = x4 p2 = x4 p0 = x4

0 0 0 0 0 0 0

0 0 0 1 1 1 1

0 0 1 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1 1 1 1 1

0 1 0 1 1 1 1

1 0 0 1 1 1 1

0 1 1 0 0 0 0

1 0 1 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 0 0

1 1 0 1 1 1 1

1 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

The decoding error probability for error pattern e12 = (1, 1, 1, 0) is upper bounded by

PE(e12)SM ≤ 3

(
1

1 + γs

)
+

(
1

1 + γs

)(
1

1 + 2γr

)
+ 3

(
1

1 + γs

)2

+ 3

(
1

1 + γs

)2( 1

1 + 2γr

)
+

(
1

1 + γs

)3

+ 3

(
1

1 + γs

)3( 1

1 + 2γr

)
+

(
1

1 + γs

)4( 1

1 + 2γr

)
∼ 3

γs
as γs, γr →∞

PE(e12)TD ≤ 3

(
1

1 + γs

)
+

(
1

1 + γs

)(
1

1 + γr

)2

+ 3

(
1

1 + γs

)2

+ 3

(
1

1 + γs

)2( 1

1 + γr

)2

+

(
1

1 + γs

)3

+ 3

(
1

1 + γs

)3( 1

1 + γr

)2

+

(
1

1 + γs

)4( 1

1 + γr

)2

∼ 3

γs

(C.22)

where the error event e12 occurs with the following probability

P (e12) = P (e1 = 1)P (e2 = 1)P (e3 = 1)P (e4 = 0)

=
3∏
i=1

pe,ri (1− pe,r4)
(C.23)
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Table C.13 Codebook for Error Pattern e13 = (e1, e2, e3, e4) = (1, 1, 0, 1)

SM TD

x1, x2 x3, x4 p1 = x3 p2 = x3 p0 = x3

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 1 1 1

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1 1 1 1 1

0 1 0 1 0 0 0

1 0 0 1 0 0 0

0 1 1 0 1 1 1

1 0 1 0 1 1 1

1 1 0 0 0 0 0

1 1 1 0 1 1 1

1 1 0 1 0 0 0

1 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

The decoding error probability for error pattern e13 = (1, 1, 0, 1) is upper bounded by

PE(e13)SM ≤ 3

(
1

1 + γs

)
+

(
1

1 + γs

)(
1

1 + 2γr

)
+ 3

(
1

1 + γs

)2

+ 3

(
1

1 + γs

)2( 1

1 + 2γr

)
+

(
1

1 + γs

)3

+ 3

(
1

1 + γs

)3( 1

1 + 2γr

)
+

(
1

1 + γs

)4( 1

1 + 2γr

)
∼ 3

γs
as γs, γr →∞

PE(e13)TD ≤ 3

(
1

1 + γs

)
+

(
1

1 + γs

)(
1

1 + γr

)2

+ 3

(
1

1 + γs

)2

+ 3

(
1

1 + γs

)2( 1

1 + γr

)2

+

(
1

1 + γs

)3

+ 3

(
1

1 + γs

)3( 1

1 + γr

)2

+

(
1

1 + γs

)4( 1

1 + γr

)2

∼ 3

γs

(C.24)

where the error event e13 occurs with the following probability

P (e13) = P (e1 = 1)P (e2 = 1)P (e3 = 0)P (e4 = 1)

= pe,r1pe,r2(1− pe,r3)pe,r4

(C.25)
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Table C.14 Codebook for Error Pattern e14 = (e1, e2, e3, e4) = (1, 0, 1, 1)

SM TD

x1, x2 x3, x4 p1 = x2 p2 = x2 p0 = x2

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 1 1 1

1 0 0 0 0 0 0

0 0 1 1 0 0 0

0 1 0 1 1 1 1

1 0 0 1 0 0 0

0 1 1 0 1 1 1

1 0 1 0 0 0 0

1 1 0 0 1 1 1

1 1 1 0 1 1 1

1 1 0 1 1 1 1

1 0 1 1 0 0 0

0 1 1 1 1 1 1

1 1 1 1 1 1 1

The decoding error probability for error pattern e14 = (1, 0, 1, 1) is upper bounded by

PE(e14)SM ≤ 3

(
1

1 + γs

)
+

(
1

1 + γs

)(
1

1 + 2γr

)
+ 3

(
1

1 + γs

)2

+ 3

(
1

1 + γs

)2( 1

1 + 2γr

)
+

(
1

1 + γs

)3

+ 3

(
1

1 + γs

)3( 1

1 + 2γr

)
+

(
1

1 + γs

)4( 1

1 + 2γr

)
∼ 3

γs
as γs, γr →∞

PE(e14)TD ≤ 3

(
1

1 + γs

)
+

(
1

1 + γs

)(
1

1 + γr

)2

+ 3

(
1

1 + γs

)2

+ 3

(
1

1 + γs

)2( 1

1 + γr

)2

+

(
1

1 + γs

)3

+ 3

(
1

1 + γs

)3( 1

1 + γr

)2

+

(
1

1 + γs

)4( 1

1 + γr

)2

∼ 3

γs

(C.26)

where the error event e14 occurs with the following probability

P (e14) = P (e1 = 1)P (e2 = 0)P (e3 = 1)P (e4 = 1)

= pe,r1 (1− pe,r2) pe,r3 pe,r4

(C.27)
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Table C.15 Codebook for Error Pattern e15 = (e1, e2, e3, e4) = (0, 1, 1, 1)

SM TD

x1, x2 x3, x4 p1 = x1 p2 = x1 p0 = x1

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 1 1 1

0 0 1 1 0 0 0

0 1 0 1 0 0 0

1 0 0 1 1 1 1

0 1 1 0 0 0 0

1 0 1 0 1 1 1

1 1 0 0 1 1 1

1 1 1 0 1 1 1

1 1 0 1 1 1 1

1 0 1 1 1 1 1

0 1 1 1 0 0 0

1 1 1 1 1 1 1

The decoding error probability for error pattern e15 = (0, 1, 1, 1) is upper bounded by

PE(e15)SM ≤ 3

(
1

1 + γs

)
+

(
1

1 + γs

)(
1

1 + 2γr

)
+ 3

(
1

1 + γs

)2

+ 3

(
1

1 + γs

)2( 1

1 + 2γr

)
+

(
1

1 + γs

)3

+ 3

(
1

1 + γs

)3( 1

1 + 2γr

)
+

(
1

1 + γs

)4( 1

1 + 2γr

)
∼ 3

γs
as γs, γr →∞

PE(e15)TD ≤ 3

(
1

1 + γs

)
+

(
1

1 + γs

)(
1

1 + γr

)2

+ 3

(
1

1 + γs

)2

+ 3

(
1

1 + γs

)2( 1

1 + γr

)2

+

(
1

1 + γs

)3

+ 3

(
1

1 + γs

)3( 1

1 + γr

)2

+

(
1

1 + γs

)4( 1

1 + γr

)2

∼ 3

γs

(C.28)

where the error event e15 occurs with the following probability

P (e15) = P (e1 = 0)P (e2 = 1)P (e3 = 1)P (e4 = 1)

= (1− pe,r1)
4∏
i=2

pe,ri

(C.29)
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Table C.16 Codebook for Error Pattern e16 = (e1, e2, e3, e4) = (1, 1, 1, 1)

SM TD

x1, x2 x3, x4 p1 = ∅ p2 = ∅ p0 = ∅
0 0 0 0 ∅ ∅ ∅
0 0 0 1 ∅ ∅ ∅
0 0 1 0 ∅ ∅ ∅
0 1 0 0 ∅ ∅ ∅
1 0 0 0 ∅ ∅ ∅
0 0 1 1 ∅ ∅ ∅
0 1 0 1 ∅ ∅ ∅
1 0 0 1 ∅ ∅ ∅
0 1 1 0 ∅ ∅ ∅
1 0 1 0 ∅ ∅ ∅
1 1 0 0 ∅ ∅ ∅
1 1 1 0 ∅ ∅ ∅
1 1 0 1 ∅ ∅ ∅
1 0 1 1 ∅ ∅ ∅
0 1 1 1 ∅ ∅ ∅
1 1 1 1 ∅ ∅ ∅

The decoding error probability for error pattern e16 = (1, 1, 1, 1) is upper bounded by

PE(e16)SM ≤ 4

(
1

1 + γs

)
+ 6

(
1

1 + γs

)2

+ 4

(
1

1 + γs

)3

+

(
1

1 + γs

)4

∼ 4

γs
as γs, γr →∞

PE(e16)TD ≤ 4

(
1

1 + γs

)
+ 6

(
1

1 + γs

)2

+ 4

(
1

1 + γs

)3

+

(
1

1 + γs

)4

∼ 4

γs

(C.30)

where the error event e16 occurs with the following probability

P (e16) = P (e1 = 1)P (e2 = 1)P (e3 = 1)P (e4 = 1)

=

4∏
i=1

pe,ri

(C.31)
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The corresponding outage probability for each error pattern is given as follows.

Table C.17 Outage Probability P (out|ei) for error pattern ei, i = 1, · · · , 16

ei P (ei) SM TD

e1
∏4
i=1(1− pri) pds

[
1− (1− pSM) · (1− pds)

]
pds

[
1− (1− pTD) · (1− pds)3

]
e2

∏3
i=1(1− pri)pr4 pds

[
1− (1− pSM) · (1− pds)

]
pds

[
1− (1− pTD) · (1− pds)2

]
e3

∏
i=1,2,4(1− pri)pr3 pds

[
1− (1− pSM) · (1− pds)

]
pds

[
1− (1− pTD) · (1− pds)2

]
e4

∏
i=1,3,4(1− pri)pr2 pds · pSM pds

[
1− (1− pTD) · (1− pds)2

]
e5

∏
i=2,3,4(1− pri)pr1 pds pds

e6
∏
i=1,2(1− pri)

∏
j=3,4 prj pds

[
1− (1− pSM) · (1− pds)

]
pds

[
1− (1− pTD) · (1− pds)

]
e7

∏
i=1,3(1− pri)

∏
j=2,4 prj pds · pSM pds

[
1− (1− pTD) · (1− pds)

]
e8

∏
i=2,3(1− pri)

∏
j=1,4 prj pds pds

e9
∏
i=1,4(1− pri)

∏
j=2,3 prj pds · pSM pds

[
1− (1− pTD) · (1− pds)

]
e10

∏
i=2,4(1− pri)

∏
j=1,3 prj pds pds

e11
∏
i=3,4(1− pri)

∏
j=1,2 prj pds pds

e12
∏
i=1,2,3 pri(1− pr4) pds pds

e13
∏
i=1,2,4 pri(1− pr3) pds pds

e14
∏
i=1,3,4 pri(1− pr2) pds pds

e15
∏
i=2,3,4 pri(1− pr1) pds · pSM pds · pTD

e16
∏4
i=1 pri pds pds
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APPENDIX D. EIGENVALUES OF ∆XRD ·∆XH
RD

In this appendix, we evaluate the eigenvalues of ∆XRD · ∆XH
RD for SM and GC mode.

Without loss of generality, assume the parity bit va,k = 0 for all k. Then we have

Xa,SM =

 ya,1 ya,3

ya,2 ya,4

 =

 √Er √Er√
Er

√
Er


Xa,GC =

√
Er√
5

 α(1 + θ) α(1 + θ)

ᾱi(1 + θ̄) ᾱ(1 + θ̄)


(D.1)

where ya,k = (−1)va,k
√
Er is BPSK constellation corresponding to the parity bit va,k.

If {va,l ⊕ vb,l, l = 1, · · · , 4} is given by (0, 0, 0, 1), it follows that

Xb,SM =

 √Er √
Er

√
Er −

√
Er

 , ∆XSM = Xa,SM −Xb,SM =

 0 0

0 2
√
Er


∆XSM∆XH

SM =

 0 0

0 4Er


(D.2)

for SM mode and

∆XGC =
2
√
Er√
5

 0 αθ

ᾱiθ̄ 0


∆XGC∆XH

GC =
4Er

5

 |α|2θ2 0

0 |ᾱ|2θ̄|2

 =
4Er√

5

 θ 0

0 −θ


(D.3)

for GC mode where we used the following equalities.

|α|2θ2 =
√

5θ, |ᾱ|2θ̄|2 = −
√

5θ̄ (D.4)

The eigenvalues for other {va,l ⊕ vb,l, l = 1, · · · , 4} combinations can be derived similarly.
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APPENDIX E. gGC(γ) FOR GOLDEN CODE

gGC(γ) for GC mode is given by

E{λn}

[
nR∏
n=1

(
1 + d−αr,d λn/4N0

)−nD

]

=
1

2L

1 +
4[

(1 + θγr/
√

5)(1− θ̄γr/
√

5)
]nD

+
4[

(1 + (1 +
√

3
5)γr)(1 + (1−

√
3
5)γr)

]nD

+
2[

(1 + (1 + 2θ)γr/
√

5)(1− (1 + 2θ̄)γr/
√

5)
]nD

+
4[

(1 + (6 +
√

148
5 )γr)(1 + (6−

√
148
5 )γr)

]nD

+
1[

(1 + (2
√

5 + 3
√

2)γr)(1 + (2
√

5− 3
√

2)γr
]nD

]
.

∣∣∣∣∣
LGC=4

(E.1)
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APPENDIX F. THE ACCURACY OF (6.16) AND (6.17)

In this appendix we discuss the accuracy of the approximations

xk(t− τ) ' xk(t), k = 1, · · · ,K (F.1)

and

ni(t− τ) ' ni(t), i = 1, · · · , NR. (F.2)

The accuracy of the approximation in (F.1) can be measured by the normalized mean square

error (MSE)

E[|xk(t)− xk(t− τ)|2]

Rxx(0)
= 2[1−Rxx(τ)/Rxx(0)] (F.3)

where Rxx(τ) = E[xk(t)x
∗
k(t− τ)] is the autocorrelation function of xk(t). For rectangular pulse

shaping, it can be shown that

Rxx(τ) = Rxx(0)

(
1− |τ |

T

)
, for |τ | < T (F.4)

where T is the symbol duration [76]. Therefore, the normalized MSE is

E[|xk(t)− xk(t− τ)|2]

Rxx(0)
= 2

[
1− Rxx(τ)

Rxx(0)

]
(F.5)

=
2|τ |
T
, for |τ | < T (F.6)

=
3

2fcT
(F.7)

� 1. (F.8)

For example, when fc is 1GHz and the symbol duration T is 10−6 second, corresponding to the

symbol rate of 1M symbols per second, the normalized MSE is 1.5× 10−3, which is negligibly

small.
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For raised-cosine pulse shaping, the autocorrelation function of xk(t) is given by [77]

Rxx(τ) = T

[
sinc(τ/T ) · cos(απτ/T )

1− (2ατ/T )2
− α

4
· sinc(ατ/T ) · cos(πτ/T )

1− (ατ/T )2

]
, (F.9)

where sinc(x) = sin(πx)/(πx). For fc = 1GHz and T = 10−5 the normalized MSE is 2.1×10−4,

and for fc = 1GHz and T = 10−6 it is zero. Hence, the accuracy of the approximation in (F.1)

is even higher for the raised-cosine pulse shaping.

A similar argument can be made for (F.2). Suppose ni(t) is a low-pass, wide-sense stationary

random process with a flat power spectral density over a bandwidth of W , where W is much

smaller than fc. Then, it can be shown that Rnini(τ) = Rnini(0) sin(πτW )/(πτW ). Hence, the

normalized MSE is

E[|ni(t)− ni(t− τ)|2]

Rnini(0)
= 2

[
1− sin(πτW )

πτW

]
(F.10)

≈ 1

3
(πτW )2 (F.11)

� 1 (F.12)

where the approximation in (F.11) follows from the Taylor expansion sin(x) ≈ x−x3/6. Since,

for τ = 3/(4fc), τW = 3W/(4fc)� 1, the approximation error in (F.2) is also negligibly small.

For example, when fc is 1GHz and the symbol duration T is 10−6 second, corresponding to the

bandwidth W of 106. the normalized MSE is 1.85× 10−6.
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APPENDIX G. THE ACCURACY OF (6.22) AND (6.23)

In this appendix we discuss the accuracy of the approximations in (6.22) and (6.23). If we

let

∆xk(t) = xk(t− τ)− xk(t), k = 1, · · · ,K (G.1)

∆ni(t) = ni(t− τ)− ni(t), i = 1, · · · , NR (G.2)

then it follows from (6.14), (6.15), and (6.20) that

y1(t) = Re{[x1(t) + w11n1(t) + w21n2(t)]ej2πfct}

+Re{jw11,I [h11∆x1(t) + h21∆x2(t) + ∆n1(t)]ej2πfct}

+Re{jw21,I [h12∆x1(t) + h22∆x2(t) + ∆n2(t)]ej2πfct}. (G.3)

Down converting y1(t) into the baseband (through the RF chain) yields

z1(t) = [x1(t) + w11n1(t) + w21n2(t)]

+jw11,I [h11∆x1(t) + h21∆x2(t) + ∆n1(t)]

+jw21,I [h12∆x1(t) + h22∆x2(t) + ∆n2(t)] (G.4)

where the first term on the right hand side of (G.4) is for the conventional receiver and the

second and the third terms are present only for the proposed receiver. Therefore, the signal-

to-interference-plus-noise-ratio (SINR) for the conventional receiver, given h, is given by

SINRc(h) =
γ

|w11|2 + |w21|2
(G.5)



www.manaraa.com

121

where γ = E[|x1(t)|2]/E[|ni(t)|2] is the signal-to-noise ratio per receive antenna, and that for

the proposed receiver is given by

SINRp(h)

= E[|x1(t)|2]/{(|w11|2 + |w21|2)E[|ni(t)|2]

+(|w11,I |2E[|∆n1(t)|2] + |w21,I |2E[|∆n2(t)|2])

+(|w11,Ih11 + w21,Ih12|2)E[|∆x1(t)|2]

+(|w11,Ih21 + w21,Ih22|2)E[|∆x2(t)|2]}

= {(|w11|2 + |w21|2)γ−1

+(|w11,I |2 + |w21,I |2)(πτW )2/3 · γ−1

+(|w11,Ih11 + w21,Ih12|2

+|w11,Ih21 + w21,Ih22|2) · 2|τ |/T}−1 (G.6)

where we used the equalities E[|∆xi(t)|2]/E[|xi(t)|2] = 2|τ |/T and E[|∆ni(t)|2]/E[|ni(t)|2] ≈

(πτT )2/3. Hence, it follows from (G.5) and (G.6) that the ratio between SINRc and SINRp,

given h, is given by

SINRc(h)

SINRp(h)

= 1 +
|w11,I |2 + |w21,I |2

|w11|2 + |w21|2
(πτW )2

3

+
|w11,Ih11 + w21,Ih12|2 + |w11,Ih21 + w21,Ih22|2

|w11|2 + |w21|2

·2|τ |γ
T

. (G.7)

For i.i.d. Rayleigh flat fading channels, Monte Carlo simulation shows that

E
[
|w11,I |2+|w21,I |2
|w11|2+|w21|2

]
= 1

2 (G.8)

E
[
|w11,Ih11+w21,Ih12|2+|w11,Ih21+w21,Ih22|2

|w11|2+|w21|2

]
= 2

3 . (G.9)

Hence, it follows from (G.7)-(G.9) that the average ratio between SINRc and SINRp is given

by

SINRc

SINRp
= 1 +

1

6
(πτW )2 +

4

3

|τ |γ
T

. (G.10)
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